

Characterizing the Organic Composition of Snow and Surface Water Across the Athabasca Region Jean Birks, Yi Yi, Sunny Cho, and John Gibson

Potential Sources of Organics

Potential Sources of Organics

Objectives

Methods: Organic Profiling

Electrospray ionization fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS)

- > 500,000 FWHM with broadband detection
- Simultaneous detection of 10,000 compounds in a single acquisition
- Highest broadband mass resolution power and mass accuracy available, making it possible to identify individual compounds in a complex mixture of organics.

Methods: Organic Profiling

Snow & Surface Water Samples

- 79 surface water samples
 - 73 Athabasca River and tributary samples, and
 - 6 lake samples
- 7 snow samples.
- Samples were collected by ESRD during various snow and surface water monitoring programs

Snow & Surface Water Samples

What dissolved organics were detected?

		# of Peaks
Snow	Far-Field	1738
	Near-Field	2120
Rivers	Athabasca	2816
	Tributaries	3183
Lakes	Lakes	3009

The # of peaks detected in river samples increased from March (under-ice) to Sept.

Principal Component Analysis

- Near field snow is different from background snow.
- Dissolved organics present in surface water are different from near field snow.

Results

- Different compound classes are present in:
 - Snow and surface water
 - Near and far field snow
- Near-field snow samples have N₂O_n and S₂O_n compound classes, which are absent in far-field snow

Naphthenic acids, $C_n H_{2n+z} O_2$

Results: New Tracers?

- Can we use these results to identify potential tracers of natural and anthropogenic sources of organics in the AOSR?
- Interest in using $O_2:O_4$ as a tracer of OSPW.

Results: New Tracers?

 Importance of characterizing all of the potential endmembers and multi-tracer approach.

Summary

- Near-field snow samples were compositionally different from far-field snow
- The dissolved organic composition of upstream Athabasca River is similar to far-field snow
- No evidence that Athabasca River become more similar to near-field snow
- Compound classes potentially indicating sources in AOSR have been identified
 - Near-field snow samples have N₂O_n and S₂O_n compound classes, which are absent in far-field snow.

Legend **Snow Locations**

R4

Snow FTICR and SWI Snow SWI Only

River Locations

- River FTICR and SWI
- River FTICR Only

Snow-River Co-Locations

- Co FTICR and SWI Co FTICR Only
- ★ City
- -Road
 - Watercourse

Watershed

- S Firebag River Watershed
- Kuskeg River Watershed Steepbank River Watershed

Birks et al.,2014

Next Steps: Streamflow Partitioning

- Determining underlying causes of water cycle variability
- Source-apportionment
- Better understanding of water qualitywater quantity relationships
- Role of snowmelt, groundwater or wetlands in determining water quality

Potential Applications of Results

- Ultrahigh resolution organic profiling may provide a way of identifying atmospherically derived organics.
- Identified compound classes present in near-field snow that are not present in farfield snow.
- Benefits of combining research with monitoring
 - Access to samples and expertise
 - Linking applied research with policy

Thanks !

Acknowledgements:

- Funding from AITF and Oil Sands Research and Information Network (OSRIN), University of Alberta.
- AESRD staff: Brian Jackson, Shelley Manchur, Jessica Di Maria, Mike Bilyk, Chris Ware and Roderick Hazewinkel for sample collection coordination.
- Drs. Christoph H. Borchers and Jun Han (Genome BC Proteomics Centre – University of Victoria) for sample analysis.
- Dr. Kusumakar Sharma (AESRD) and Emily Taylor (AITF).

Do the dissolved organics present in snow resemble those present in surface waters? : 2012

Combining isotopic and organic profiling we have found that the dissolved organics present in rivers during the peak of snowmelt do not show evidence of a significant contribution of atmospheric organics.