Remote Sensing of CH$_4$ under Controlled Release by Differential Absorption Light Detection and Ranging (DiAL)

Presenters:
Quamrul Huda and Zheng Yang

Alberta Environmental Monitoring, Evaluation and Reporting Agency

2015 CPANS 2015 Conference
May 26-27, 2015
Presentation Layout

- The Alberta DiAL
- DiAL principle
- System arrangement
- Set-up for CH\textsubscript{4} measurement
- The real time data
- Data Processing
- Results
- Summary
The First DiAL unit in North America

- Differential Absorption LiDAR (DiAL) mobile system was the product of collaboration between Government of Alberta and the Space Dynamic Lab (SDL) of the Utah State University.
- It was delivered in March 2013
DiAL features

- Can travel across Alberta.
- Can map pollutants in 2D and 3D.
- Sensing of CO\textsubscript{2} and CH\textsubscript{4} in the ppm range for 2 km.
- Sensing of PM for 10 km.
- Spatial resolution of 10 m.
- Eye Safe

Particularly suited for measuring sources in oil sands region: mining site, tailings pond, industrial complex, SAGD and cold flow operations.
How does DiAL work?

- Two laser beams are sent out with slightly different wavelengths: one corresponds to the absorption peak of the pollutant gas of interest and the other one corresponds to the non-absorbing background.

- The difference between the two signals corresponds to the gas concentration.
Gases of Present Interest

Carbon Dioxide (CO_2)

Methane (CH_4)
AEMERA’s DiAL unit

Cut-away view

- Floor and ceiling mounts
- Scanner overlap plate
- Optical Bench
- HVAC unit
- Laser chiller
- Laser power supply
- Laser dye pumps
- 12u computer racks
- Solvent cabinet
- Storage
- Access door*
- Office space
- Nitrogen K-cylinder*
Optical system in DiAL
Optical system in DiAL — Laser system

Pro-230 YAG Laser

532 nm

Cobra-Stretch Dye Laser

1064 nm

OPANIR

Wavelength Meter

Grating
Optical system in DiAL
— Beam TX & RX system

Power meter
Beam Expander
Receiver Telescope
Filter
APD
Setup for Gas Sensing
The 40 feet Sea-Can
Laser Beam Alignment
Laser Beam Profiling

Beam on Target

Beam partially on Target

Beam off the Target

Laser hitting the edge of a hard target
Estimation of Beam Divergence

Target Distance = 400 m
On line Divergence = 0.035°; Beam size = 24.4 cm
Off line Divergence = 0.062°; Beam size = 43.3 cm
Spatial misalignment = 0.006°; Spatial separation = 4.2 cm
Real Time PM Waterfall Plot
Data Extraction and Processing

- Absorbing ‘On’ data
- Non-absorbing ‘Off’ data

Path-integrated concentration
Laser power profile
Non-absorbing ‘Off’ data
Absorbing ‘On’ data
Laser Beam Through Sea-Can

Non-absorbing ‘Off’ data

Absorbing ‘On’ data

Less scattering inside the Sea-Can
Laser Beam Through Sea-Can on Gas Release

- Non-absorbing ‘Off’ data
- Absorbing ‘On’ data
- Stronger reduction of the ‘On’ laser power
Concentration Profile of CH$_4$ inside the Sea Can

Concentration (ppm)

Path Integrated Concentration
Path-Integrated \(\text{CH}_4 \) Concentration

\[\text{CH}_4 \text{ Release} \]

\[\text{No gas release} \]
Waterfall Plot of CH$_4$ Concentration under Controlled Release

Distance from DiAL unit (m)

CH$_4$ concentration inside the Sea Can (ppm)

Laser Pulses

CH$_4$ start

CH$_4$ stop
Summary

• DiAL can be used as a powerful remote sensing tool for selected gas elements.
• Detection is achieved without a hard reflector.
• Detection of controlled release of CH$_4$ at a distance of 400m is demonstrated.
• Gas concentration is profiled along a length of 12 meter with a spatial resolution of 1.5 meter.
• Temporal variation of gas concentration is monitored and profiled.
Participants

Alberta Environmental Monitoring, Evaluation and Reporting Agency (AEMERA)

Quamrul Huda, Zheng Yang, Long Fu, Bonnie Leung

Civil and Environmental Engineering, University of Alberta

Longdong Zhang, Zaher Hashisho

Space Dynamics Laboratory, Utah State University

Michael Wojcik, Blake Crowther

Alberta Innovates–Technology Futures

Allan Chambers, Mark Olson

Boreal Laser Inc.

John Tulip
Thanks!
aemera.org