Remote Sensing of CH<sub>4</sub> under Controlled Release by Differential Absorption Light Detection and Ranging (DiAL)

**Presenters**:

### **Quamrul Huda and Zheng Yang**

Alberta Environmental Monitoring, Evaluation and Reporting Agency

2015 CPANS 2015 Conference May 26-27, 2015



### **Presentation Layout**

- The Alberta DiAL
- DiAL principle
- System arrangement
- Set-up for CH<sub>4</sub> measurement
- The real time data
- Data Processing
- Results
- Summary



Alberta Environmental Monitoring, Evaluation and Reporting Agency

### **The First DiAL unit in North America**



- Differential Absorption LiDAR (DiAL) mobile system was the product of collaboration between Government of Alberta and the Space Dynamic Lab (SDL) of the Utah State University.
- It was delivered in March 2013

### **DiAL features**



- Can travel across Alberta.
- Can map pollutants in 2D and 3D.
- Sensing of  $CO_2$  and  $CH_4$  in the ppm range for 2 km.
- Sensing of PM for 10 km.
- Spatial resolution of 10 m.
- Eye Safe

Particularly suited for measuring sources in oil sands region: mining site, tailings pond, industrial complex, SAGD and cold flow operations.

### How does DiAL work?





**Range from laser** 

- Two laser beams are sent out with slightly different wavelengths: one corresponds to the absorption peak of the pollutant gas of interest and the other one corresponds to the non-absorbing background.
- The difference between the two signals corresponds to the gas concentration.



#### **Range from laser**

### **Gases of Present Interest**



### **AEMERA's DiAL unit**





## **Optical system in DiAL**





Cobra-Stretch Dye Laser

OPANIR



# **Setup for Gas Sensing**



### The 40 feet Sea-Can







### **Laser Beam Alignment**



Anthony Henday

## **Laser Beam Profiling**



Laser hitting the edge of a hard target

#### Beam on Target

#### Beam partially on Target



### **Estimation of Beam Divergence**



Target Distance= 400 m On line Divergence= 0.035°; Beam size= 24.4 cm Off line Divergence= 0.062°; Beam size= 43.3 cm Spatial misalignment= 0.006°; Spatial separation= 4.2 cm

### **Real Time PM Waterfall Plot**



### **Data Extraction and Processing**



## Laser Beam Through Sea-Can



### Laser Beam Through Sea-Can on Gas Release



# Concentration Profile of CH<sub>4</sub> inside the Sea Can



### **Path-Integrated CH<sub>4</sub> Concentration**



## Waterfall Plot of CH<sub>4</sub> Concentration under Controlled Release



# Summary

- DiAL can be used as a powerful remote sensing tool for selected gas elements.
- Detection is achieved without a hard reflector.
- Detection of controlled release of CH<sub>4</sub> at a distance of 400m is demonstrated.
- Gas concentration is profiled along a length of 12 meter with a spatial resolution of 1.5 meter.
- Temporal variation of gas concentration is monitored and profiled.



### **Participants**

Alberta Environmental Monitoring, Evaluation and Reporting Agency (AEMERA)

Quamrul Huda, Zheng Yang, Long Fu, Bonnie Leung

Civil and Environmental Engineering, University of Alberta Longdong Zhang, Zaher Hashisho

Space Dynamics Laboratory, Utah State University

Michael Wojcik, Blake Crowther

Alberta Innovates–Technology Futures

Allan Chambers, Mark Olson

Boreal Laser Inc.

John Tulip

Alberta Environmental Monitoring, Evaluation and Reporting Agency



