

OP-FTIR: a Versatile and Powerful Technology for Measuring Multiple Gaseous Compounds

Longdong Zhang¹, Dr. Zaher Hashisho¹ Dr. Long Fu², Dr. Quamrul Huda², Dr. Bonnie Leung²

¹ Department of Civil and Environmental Engineering, University of Alberta ² Alberta Environmental Monitoring, Evaluation and Reporting Agency

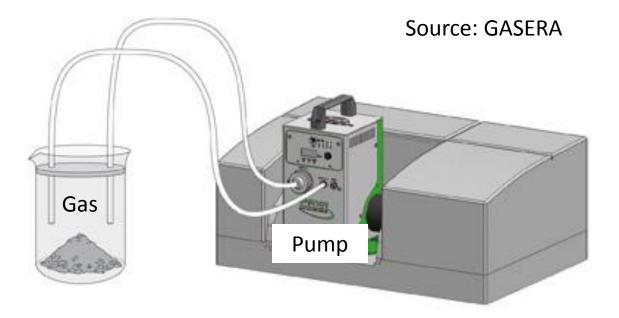
> CPANS Annual Conference and General Meeting May 26 & 27, 2015

Outline

- Background
 - Brief history; Instrumentation
- Capabilities and Limitations
- Applications in Different Areas
- Highlights of Select Projects
 Edmonton and Fort McKay
- Conclusions & Future Work
 - Links to Alberta

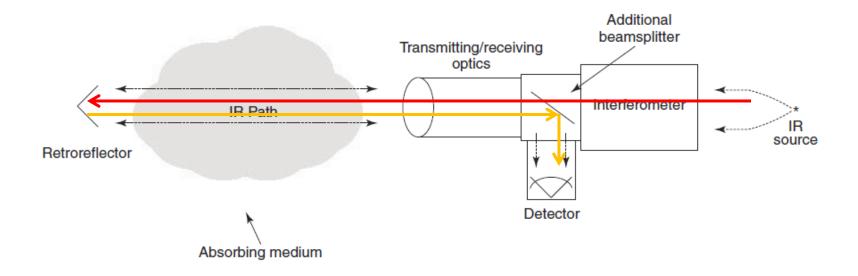
Background

1990: OP-FTIR became well developed

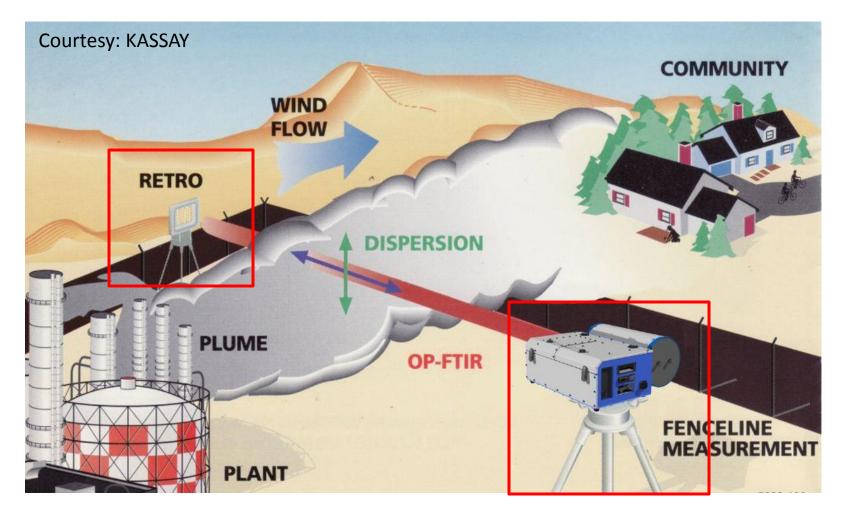

Today: 44 years

1971: Origin of OP-FTIR (Philip L. Hanst)

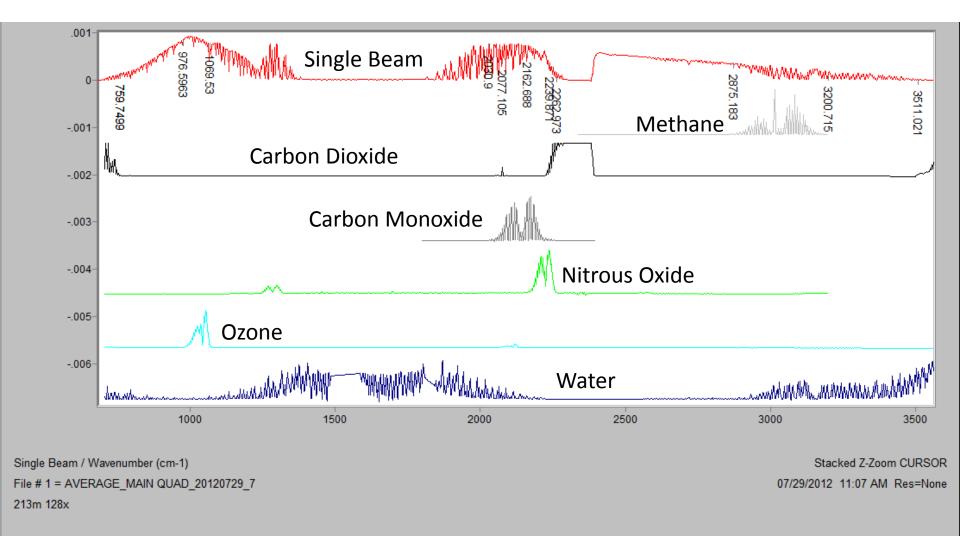
1980s and 1990s: (benchtop) FTIR became dominant among IR technologies


1905: a molecule's IR spectrum can serve as a "chemical fingerprint" (William Coblentz)

Background (cont'd)

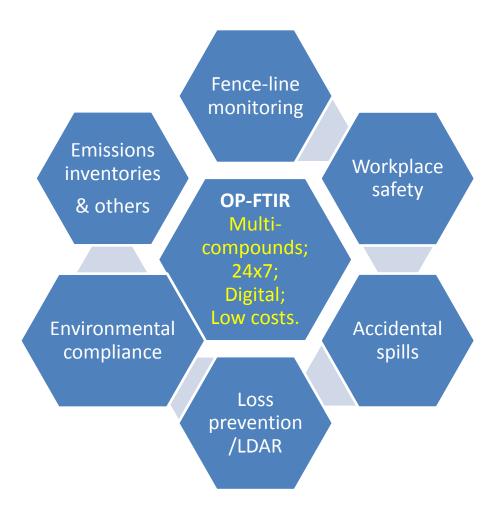

A picture of a benchtop (extractive) FTIR

Background (cont'd)



Schematic of a monostatic OP-FTIR spectrometer (Russwurm and Childers 2002)

Background (cont'd)



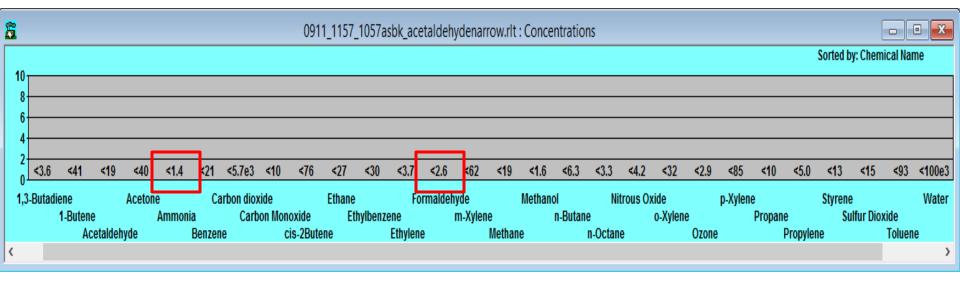
A typical configuration of air monitoring using OP-FTIR

 IR absorbance spectra ("chemical fingerprints") of 6 select compounds in clean air

Capabilities & Limitations

About 110 example compounds (U.S. EPA, 2011)

Table 2-1. Example List of Compounds Measured by FTIR Open-path Systems


	Species		
acetaldehyde	1,4-dimethyl piperazine	methyl mercaptan	
acetic acid	1,4-dioxane	methyl methacrylate	
acetone	ethane	2-methyl propene	
acetonitrile	ethanol	morphaline	
acetylene	ethyl acetate	nitric acid	
acrolein	ethylamine	nitric oxide	
acrylic acid	ethylbenzene	nitrogen dioxide	
acrylonitrile	ethylene	nitrous acid	
ammonia	ethylene oxide	ozone	
benzene	ethyl mercaptan	pentane	
1,3-butadiene	formaldehyde	phosgene	
butane	formic acid	phosphine	
butanol	furan	propane	
1-butene	halocarb-11 (CC13F)	propanol	
cis-2-butene	halocarb-12 (CCl2F2)	propionaldehyde	
trans-2-butene	halocarb-22 (CHClF2)	propylene	
butyl acetate	halocarb-113 (CFC12CF2C1)	propylene dichloride	
carbon disulfide	hexafluoropropene	propylene oxide	
carbon monoxide	hydrocarbon continuum	pyridine	
carbon tetrachloride	hydrogen chloride	silane	
carbonyl sulfide	hydrogen cyanide	styrene	
chlorobenzene	hydrogen sulfide	sulfur dioxide	
chloroethane	isobutene	sulfur hexafluoride	
chloroform	isobutanol	1,1,1,2-tetrachloroethane	
m-cresol	isobutyl acetate	1,1,2,2-tetrachloroethane	
o-cresol	isobutylene	tetrachloroethylene	
p-cresol	isoprene	toluene	
cyclohexane	isopropanol	1,1,1-trichloroethane	
1,2-dibromoethane	isopropyl ether	1,1,2-trichloroethane	
m-dichlorobenzene	methanol	trichloroethylene	
o-dichlorobenzene	methylamine	trimethylamine	
p-dichlorobenzene	methyl benzoate	1,2,4-trimethylbenzene	
1,1-dichloroethane	methyl chloride	vinyl chloride	
1,2-dichloroethane	methylene chloride	m-xylene	
1,1-dichloroethylene	methyl ether	o-xylene	
dimethylamine	methyl ethyl ketone	p-xylene	
dimethyl disulfide	methyl isobutyl ketone		

Compounds in bold are EPA Hazardous Air Pollutants (HAPs) CAA -112Title 42, Chapter 85,

Subchapter I, Part a U.S. Code 7412 (b)

Capabilities & Limitations (cont'd)

• Typical chemicals that can be measured:

- The most common criteria air contaminants: SO_x, NO_x, CO
- Volatile Organic Compounds (VOCs): n-butane, ethylene, formaldehyde, acetone, BTEX
- Green House Gases (GHGs): CH₄, CO₂
- Odour compounds: e.g., ammonia
- Detection limits: 1 ppb to tens of ppb

Capabilities & Limitations (cont'd)

Heavy rain

Retro in heavy dust

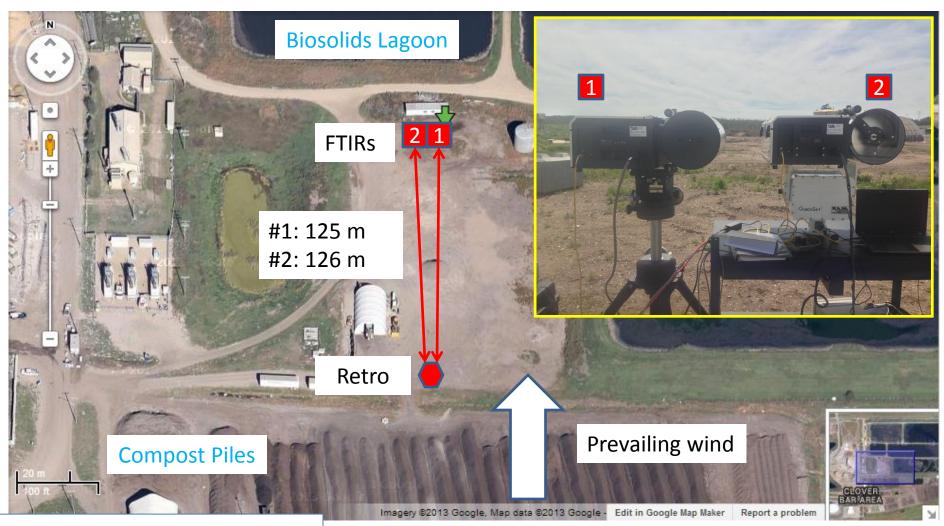
Water (rain/dew) on a retroreflector

 Unsuitable ambient conditions could cause signal and data loss in field studies

Applications in Different Areas

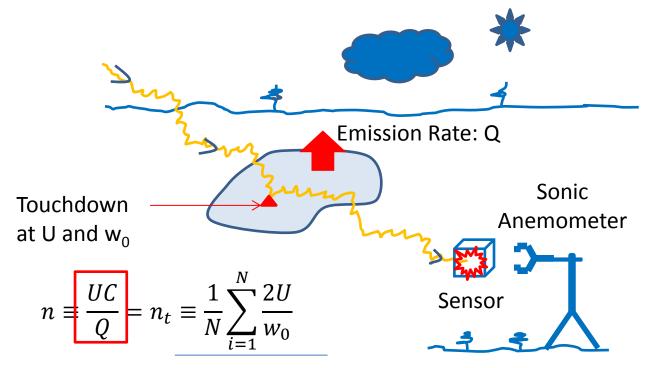
Industrial areas

- Upstream Oil & Gas Production (Segall et al. 2009); (Hashmonay 2012): Alkanes, BTEX, methanol and CH₄
- Petrochemical Complex (Chan 2006): 39 air toxics including toluene, benzene and chloroform
- Paint manufacturing plant (Lin et al. 2008): 7 VOCs (toluene, mxylene, p-xylene, styrene, methanol, acetone, and 2-butanone)
- Urban areas (Grutter et al. 2003); (Hong et al. 2004)
 - Trace gases over Mexico City: CH₄, CO, propane, acetylene and ethylene
 - Ozone & VOCs in a park surrounded by heavy traffic roads: O₃, NH₃, CH₄, CO and 26 VOC species


Applications in Different Areas (cont'd)

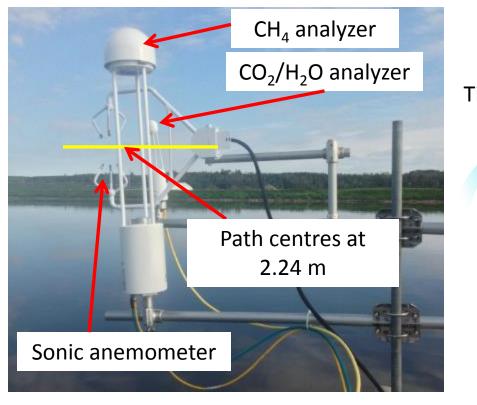
- Agricultural areas (Karl et al. 2007); (Bai 2010);
 (Bjorneberg et al. 2009)
 - Biomass burning fire: About 20 GHGs and VOCs
 - Beef & dairy cattle: CH₄
- Natural areas (Horrocks et al. 2001); (Burton et al. 2010)
 - Volcanic emissions: SO₂ & HCl
- Laboratories (Li et al. 2002)
 - Leaking gases: Methylene chloride, chloroform and acetone
- Other areas (Thoma et al. 2010) (Aneja et al. 2012) (Zhang et al. 2014)
 - Fugitive emissions from landfill applications: CH₄
 - Biosolids Lagoons: CH₄, NH₃

Applications in Different Areas (cont'd)


- Ongoing example projects involving OP-FTIR
 - South Coast Air Quality Management District
 - Texas A&M Institute of Renewable Natural Resources: shale gas industry
 - Pipeline industry: leak detection
 - Beijing, Taiwan and other cities
 - Alberta

Highlights of Select Projects

Highlights of Select Projects (cont'd)



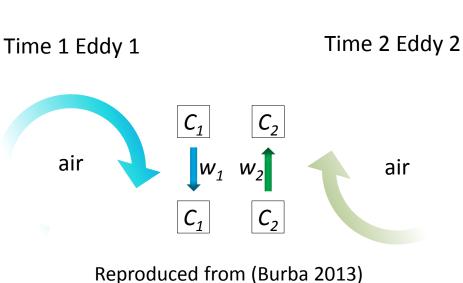

A backward Lagrangian Stochastic model

Figure inspired by the teaching of Atmospheric Boundary Layer by Dr. John D. Wilson

U: mean horizontal wind speed (m/s) C: gas concentration N: number of particles released w₀: vertical touchdown velocity n_t: theoretical value of n Software: WindTrax (Thunder Beach Scientific)

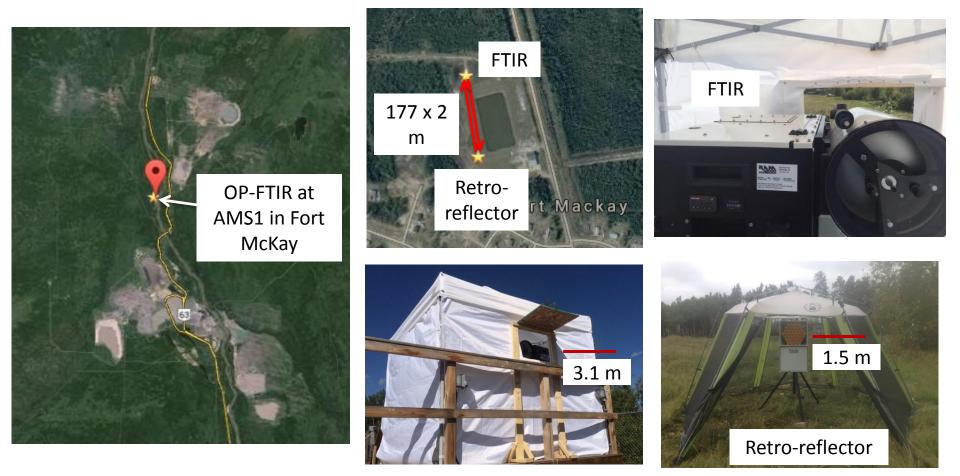
The general principle is to measure

- The number of molecules moving downward and upward over time
- Travelling speeds of these molecules (Burba 2013)

@ biosolids lagoons

$$F \approx \bar{\rho}_d \overline{w'C'}$$

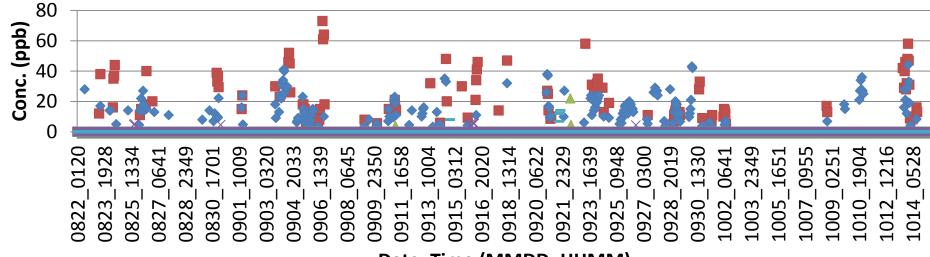
- ρ_d: mean air density;
- w': fluctuations of vertical wind speed;
- C': fluctuations of gas concentration


Software: EddyPro (LICOR)

Highlights of Select Projects (cont'd)

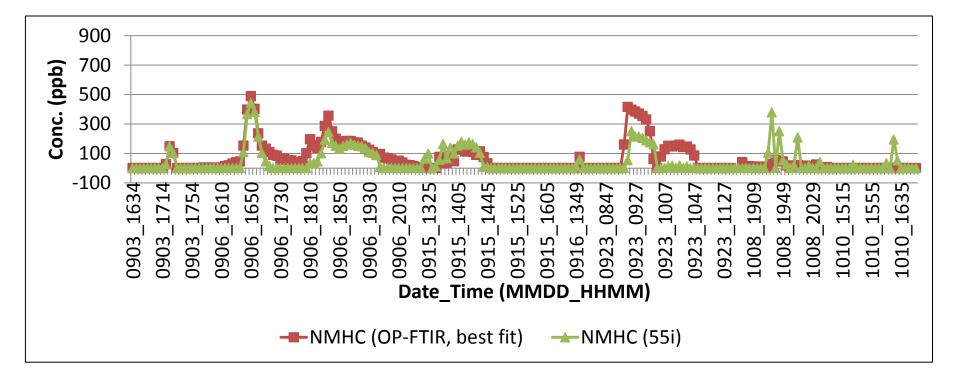
Date	Time	CH ₄ IDT	H ₄ IDT CH ₄ ECT	
		$\times 10^{-3}$ kg/(m ² -d)	imes 10 ⁻³ kg/(m ² -d)	Ratio
Day 3	13:30	4.66	4.18	1.11
Day 3	14:00	5.23	4.31	1.22
Day 3	14:30	4.26	3.30	1.29
Day 3	15:00	4.49	4.04	1.11


Note: IDT stands for Inverse Dispersion Technique; ECT stands for Eddy Covariance Technique.


@ biosolids lagoons

 August 22, 2014 – October 15, 2014 (54 days). Round-trip pathlength was 354 m; Sampling frequency was 1-min/sample, continuously; Heights of FTIR and retro-reflector were 3.1 m and 1.5 m, respectively.

@ Fort McKay AMS1



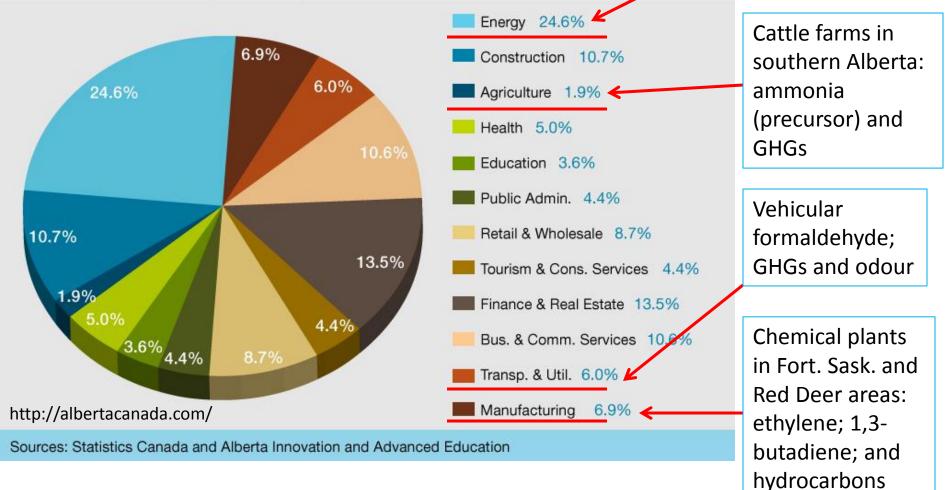
Date_Time (MMDD_HHMM)

	Compound	n-Butane (ppb)	n-Octane (ppb)	Ammonia (ppb)	Formaldehyde (ppb)	Methanol (ppb)
	Min	5.2	2.1	3.8	4.3	6.9
	Max	73	44	22	5.7	14
	Average	24.1	16.2	10.1	5.1	10.2
	Median	19	14	4.5	5.2	10
No. o [.]	f Hours Quantified	109	192	3	8	4
AAAQOG (1-hour)		NA	NA	2,000	53	2,000
	Total Hours	1300 (54 days)				
Tota	al Effective Hours	1080 (83% of total hours)				

@ Fort McKay AMS1

- Consistent trends of Non-Methane Hydrocarbon (NMHC) episodes between OP-FTIR and 55i (Thermo Fisher Scientific)
- NMHC by OP-FTIR = 3 x [n-butane (propane)] + 0 x [n-octane] (factor 3, propane (C₃H₈)).

@ Fort McKay AMS1


Conclusions & Future Work

- OP-FTIR projects in Alberta (and around the world) have shown encouraging results.
- OP-FTIR is a versatile and powerful technology for air monitoring and we anticipate that it would become more widely used.

Conclusions & Future Work

Economic Diversity: 2013

Percentage Distribution of GDP Total GDP: \$331.9 Billion (values in %) High hourly conc. of methane (13 ppm) and NMHC (400 ppb); lack of continuous VOC data (source: CASA) in the oil sands regions

Acknowledgement

- AEMERA (JOSM) and AESRD (Ecotrust) for the funding support
- WBEA and AITF for the field support (Fort McKay project)
- Dr. Sunny Cho for her support with the biosolids lagoon work
- Colleagues in Dr. Hashisho's lab for the field support (Clover Bar project)

- Thank you for your attention
- Questions? 🙂