Approaches to

Developing Meteorological Restrictions for Non-Routine Sour Gas Flaring Management Using the Risk Based Criteria

CPANS Annual Conference, Edmonton

Ray Yang, Ph.D. Levelton Consultants Ltd.

May 26-27, 2015

Outline

- Introduction
- Factors to Consider
- Approach and Criteria
- Approach Comparisons
 - 3 Approaches
 - 2 Examples
- Summary

RBC -- the Risk Based Criteria for non-routine sour gas flaring, incinerating and venting Sulphur dioxide (SO₂), low frequency of emission events

 ESRD -- Environment and Sustainable Resource Development
AER -- Alberta Energy Regulator
Directive 60: Upstream Petroleum Industry Flaring, Incinerating, and Venting

RBC for SO₂ of Non-Routine Flaring and Incinerating

Percentile	Averaging Period	RBC for SO ₂ (µg/m ³)
99 th	1-hour	450
99.9 th	1-hour	900

Applying RBC to Each Receptor

Example: Assuming total 11,040 hours modelled, then at each receptor **11** hours with concentrations $\geq 900 \ \mu g/m^3$ are allowable (99.9th percentile); **110** hours with concentrations $\geq 450 \ \mu g/m^3$ are allowable (99th percentile).

Air Quality Management Plan (AQMP) -- Meteorologically Based

• To limit or avoid operations under the specific meteorological conditions so that the RBC are met

Requirements -- Meteorologically Based AQMP

- Identify specific meteorological conditions that cause potential exceedances
- On-site meteorological monitoring
- Suspend operation under unfavourable meteorological conditions
- Resume operation after meteorological change to favourable conditions

Desired -- for a practical, economic and safe operation

• Less suspension before an operation is completed

- Less meteorological restriction hours as possible
- Bigger operation extent between two restrictions

LEVELTON

Factors to Consider

1) Numerous Restriction Possibilities

- At 2 percentile levels: the 99.9th and the 99th
- For each receptor (over 1000 receptors) or every point in the modelled domain

Example: 1 year (8760 hours) modelled

	RBC Allowable	Example at one Receptor	Restriction Possibilities
Above 900	8	10	C(10,2) = 45
Above 450	87	100	C(98,11) = 1.1E+14
Below 450	8,665	8,650	

2) Exceedance Hours Can Be Independent

- Each exceedance hour → corresponding to a meteorological condition
- Exceedance hours of one receptor can be independent to other receptor exceedance hours
 - **Different location** relative to source (distance, direction)
 - Different geographical feature (terrain, landuse)

➔ sporadic restriction

3) Meteorological Hours Not Evenly Distributed

- Each cell has different number of meteorological points
- Selection optimization
 - ➔ to avoid over-restrictive
 - ➔ to have a better restriction

Approach and Criteria

If from receptor \rightarrow restriction

- Direct approach, but sporadic and most likely over-restrictive
- If from meteorological condition \rightarrow restriction
 - Difficult to meet RBC

Criteria for Approach Comparison

- Compliance Factor
 - **C = 1** meet RBC after restriction
 - **C** = **O** does not meet RBC after restriction
- Integral Coefficient

Ci = 1/ (1+number of restricted direction blocks)

the more restricted blocks, the less the integral coefficient

- Non-Restriction Hour Ratio
 - Cr = non-restricted hours/total hours modelled

Cr as big as possible, not overly restrictive

- Comprehensive Score
 - = 1000*C*Ci*Cr

Approach Comparisons

Approach 1: All meteorological hours with predicted concentrations over 450 are restricted.

Approach 2: Exceedance hours with top ranked concentrations for each receptor are restricted.

Approach 3: Exceedance hours with large correlations to the predicted exceedances of other receptors based on meteorological conditions and, with low restriction ratio are restricted.

Example 1: 15% H₂S, Flow rate= 150 e³ m³/d; March, April and May, 2002-2006

Example 1: Comparison scores for the three approaches

Evaluation Factor\Approach	1 (All over 450 restricted)	2 (Top exceedance hours restricted)	3 (Restriction based on correlation)
Compliance Factor (C)*	1	1	1
Integral Coefficient (Ci)	Restricted Blocks > 12 < 1/13	Restricted Blocks = 12 1/13	Restricted Blocks=4 1/5
Non-Restriction Hour Ratio (Cr)	< 7976/11040	7976/11040	9716/11040
Comprehensive Score	< 55.6	55.6	176.0

(Highest score)

* A post-restriction calculation is required to ensure the RBC are met.

*Example 2: 22% H*₂*S, Flow rate= 33.3 e*³ *m*³/*d; July, August and September, 2002-2006*

Example 2: Comparison scores for the three approaches

Evaluation Factor\Approach	1 (All over 450 restricted)	2 (Top exceedance hours restricted)	3 (Restriction based on correlation)
Compliance Factor (C) *	1	1	1
Integral Coefficient (Ci)	Restricted Blocks > 35 < 1/36	Restricted Blocks = 35 1/36	Restricted Blocks=9 1/10
Non-Restriction Hour Ratio (Cr)	< 1507/11040	1507/11040	4164/11040
Comprehensive Score	< 3.8	3.8	37.2
			(Highest score)

LEVELTON

Advantages and Disadvantages for the Approaches

Comparison	1	2	3
Advantages	Simplest to apply.	Direct, applied by top ranked values.	Nicely grouped, practical to operate; the least restrictive while still following the RBC.
Disadvantages	Sporadic restriction, possibly making flaring difficult; Most restrictive AQMP.	Sporadic restriction, possibly making flaring difficult; Slightly difficult to develop.	Difficult to develop – requires an advanced algorithms for calculation.

Summary

- Approach to meteorological restrictions is very important to implement meteorologically based AQMP.
- Different methods can generate totally different restrictions.
- An efficient approach should be practical, economic and safe to operate.
- For creating a better approach, several factors need to be considered.
- Approach 3 produces least restrictive and well grouped restrictions, which can provide more flexibilities for operation while still following the RBC.

Thank you !

Questions ?

Ray Yang ryang@Levelton.com

(403) 247 1813

