Quantification of Naphthenic Acids in Water Samples: Challenges from complex matrix?

Alberto Pereira, James Storey, Graham Knox, Julius Pretorius

Edmonton, May 26, 2015
Oil Sands - Alberta

Comparative Oil Reserves (billions of barrels)
Source: Oil & Gas Journal, 2011

- Alberta: 171 barrels
- Iraq: 115 barrels
- Iran: 137 barrels
- Venezuela: 211 barrels
- Russia: 60 barrels
- USA: 19 barrels
- Mexico: 10 barrels
- Libya: 46 barrels
- Saudi Arabia: 260 barrels

Edmonton, Calgary, Peace River Oil Sands Area, Cold Lake Oil Sands Area, Athabasca Oil Sands Area, U.S.A., Canada.
Oil Sands – Water Use

Water Consumed

• 2 to 4 Barrels of Water for each Barrel of Oil

Tailing Ponds

• Cover 170 Km² (2011)
Oil Sands Affected Water (OSPW) – Toxicity

It is known that the dissolved organics are the toxic fraction.

Historical belief that naphthenic acids are the source (or main source) of toxicity

Unspecific mixture of several carboxylic acids with molecular weight of 120 to well over 700 Da obtained by naphtha fraction of crude oil.
Naphthenic acids – \((C_{n}H_{2n+z}O_{2})\)
Naphthenic acids Analysis

- Spectrophotometry
- FTIR (Jivraj, Rogers et al.)
- GC/MS (Fedorak et al.)
- ESI/MS (Headley et al.)
Application of HRMS to OSPW

1. **NO EXTRACTION**

 (100 µL injection after centrifugation)

2. **HPLC C$_{18}$ column**

3. **ESI (negative mode)**

4. **MDL 0.03 mg/L**

AITF Ultra High Resolution Method
Why Ultra High Resolution?

Resolving Power and Mass Accuracy (sub 2 ppm)

- RP = 1700
- RP = 48,000

http://fiehnlab.ucdavis.edu

RP = 100 1,000 10,000 100,000 1,000,000

- GC-MS
- ESI-MS

Quadrupole
- TOF
- Orbitrap
- FTICR

H₄S = 36.0034
C₃ = 36.0000
Orbitrap Mass Spectrometer

Main Feature:
Ultra High-resolution (> 100,000)

http://planetorbitrap.com/
Why Chromatography?

1. Reduce *matrix effect*
 - Nyakis et al. (ES&T 2013 p4471)
 - direct infusion FTICR-MS to analyze OSPW AEOs
 - 973 peaks by analysis of whole extract
 - 2231 peaks when pre-fractionated into 8 subsamples by UPLC
 - Headley et al. (Anal. Chem. 2007 p6222)
 - Same extract in different solvents gives different results

2. Cleaner MS/MS
The Challenge: OSPW is super complex!

Around 20% of the extractable organic compounds are the classical NAs (BML Sample).
Complex Samples – GC/MS Results

One liter sample

Extracted with DCM

Concentrate to 1 mL

GC-MS Results: > 1000 mg/L
GC vs Orbitrap Results for Complex Samples

Merichem oil
at 5 mg/L

Water sample

GC-MS: 1095 mg/L
Orbitrap: 21 mg/L
GC vs Orbitrap

Sample
GC vs Orbitrap

Merichem 5 mg/L

Sample
Advantage of the Ultra High Resolution

Sample 15030016042

m/z 195.1381 ± 0.0007

C_{12}H_{19}O_{2}

Sample 15030108013

Merichem oil 5mg/L

NL: 5.14E5
m/z = 195.13754-195.13884
MS 180320152
4

NL: 3.52E4
m/z = 195.13797-195.13939
MS 180320151
2

NL: 4.13E5
m/z = 195.13785-195.14008
MS 180320150
7
The other “Stuff”?

Too much data: > 2000 signals by sample
Proposed solution for processing the other “stuff”

SIEVE differential expression software makes it easy to define and automate experiments for both control-versus-treatment and trend analyses.
Principal Component Analysis
Automatic deconvolution of the data

Relative Response (%) Sample A

Sample B

Sample C

Sample D
Conclusions

The Ultra High Resolution Method Offer:

- Green (no use of DCM), sensitive, reproducible method for the quantification of Naphthenic acids in complex matrixes.

- Comprehensive non-targeted analysis for the “other compounds” present in the sample.

- Powerful analytical tool for “world class” environmental monitoring programs.
Thank you

For more information: Alberto.Pereira@albertainnovates.ca