FORMATION OF SECONDARY PM IN CAPITAL REGION

UARPORN NOPMONGCOL RAMBOLL ENVIRON

A&WMA CANADIAN PRAIRIE AND NORTHERN SECTION (CPANS) 2016 ANNUAL CONFERENCE

> MAY 3, 2016 CALGARY, CANADA

MAY 3 2016

OUTLINE

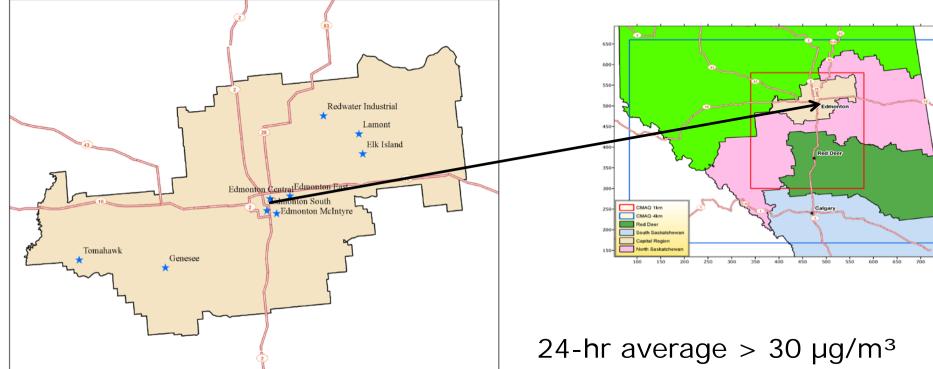
- Background (Capital Region, monitoring data)
- Modeling Methodology
- Results
- Source attribution
- Conclusion

BACKGROUND: PARTICULATE MATTER (PM)

- Fine PM : diameter smaller than 2.5 μ m; complex mixture consisting of *many* different *components*
- Cause health, vegetation, visibility problems
- Canadian Ambient Air Quality Standards (CAAQS)

Pollutants	Old Standards	New Standards	
		2015	2020
PM _{2.5} Annual	-	10 μg/m³	8.8 μg/m ³
PM _{2.5} 24-hour	30 µg/m³	28 µg/m³	27 μg/m³

• Origins

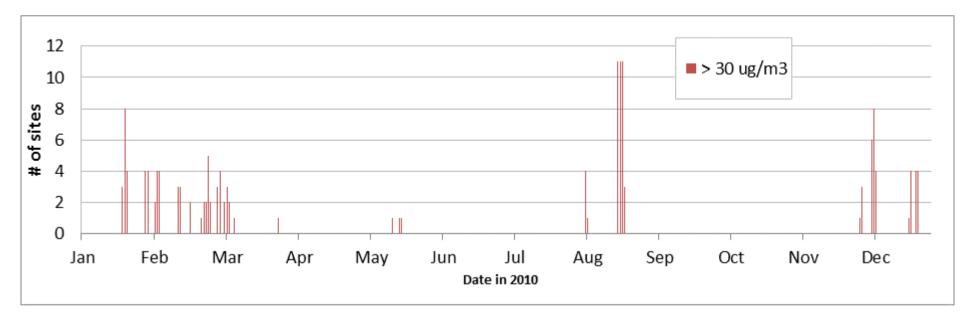

RAMBOLL ENVIRON

- Primary: emitted from a source
- Secondary: formed through chemical and physical reactions involving different precursor gases

 SO_2 , NOX, NH_3 , VOC \rightarrow NH_4 SO_4 , NH_4 NO_3 , OM

3

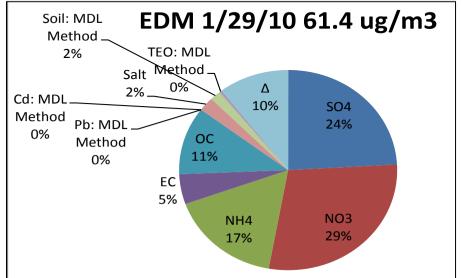
BACKGROUND: CAPITAL REGION



Sources in Capital Region: Mobile, EGU, Industrial sources, Agriculture

- 2008 : 9 exceedance days; all in winter
- 2009 : 7 exceedance days; 5 in winter
- 2010 : **41** exceedance days; 4 due to fires

BACKGROUND: 2010 EXCEEDANCES


• 9 winter episodes : peak on Jan 29

ENVIRON

RAMBOLL

 Winter episodes characterized by higher than typical secondary PM_{2.5}

```
Non-event : NH_4SO_4 + NH_4NO_3 \sim 30\%
24-hr PM_{2.5} < 10 \ \mu g/m^3
```


5

BACKGROUND: SUMMER VS WINTER PM

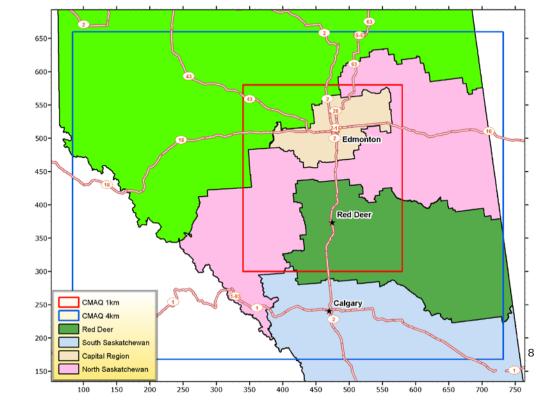
<u>Summer</u>	<u>Winter</u>
Active Photochemistry	Slow photochemistry (scarce sunlight and low radical availability)
Strong vertical mixing	Light winds, temperature inversion \rightarrow accumulation of pollution
Dominated by secondary PM OM > $SO_4 > NO_3$	Dominated by secondary PM OM > NO_3 > SO_4
High PM typically associated with SO_4	Colder temperatures favor NO ₃

Colder temperatures favor NO₃ formation; less competition by SO₄ for NH₃

BACKGROUND: STUDY GOALS

- Develop a Photochemical Grid Model (PGM) modelling database for the Capital Region
 - Reproducing the observed winter elevated PM_{2.5} sufficiently well
 - Tool for analyzing source contributions and control strategies
- Why PGM?
 - USEPA guidance (2014) requires use of photochemical models for secondary PM (e.g., sulphate and nitrate) and ozone.
 - Models with reduced form chemistry (e.g., CALPUFF) are incapable of properly simulating the chemical processes of secondary PM formation.

MODELLING : OVERALL METHODOLOGY


- Inputs focused on Capital Region
 - 2010 Alberta inventory with extensive emissions inventory updates
 - Tremendous efforts in harmonizing multiple data sources, e.g., Environment Canada 2010, AEP's Industrial Survey, NPRI, other local inventories
 - Maximum allowance in EIAs not appropriate for this application
 - WRF meteorological modeling
- CMAQ setup

RAMBOLL

- version 5.0.1
- Resolution : 36/12/4/1.33 km & 22 layers
- Highest ranked PM episode

ENVIRON

• January 26 – February 4, 2010

MODELLING: NITRATE FORMATION IN CMAQ

• NOx conversion to HNO₃ through OH and HO₂

 $NO_2 + OH --> HNO_3$

 $NO_3 + HO_2 \rightarrow HNO_3$

NTR + OH \rightarrow HNO₃ + other products

Winter: Scarce sunlight and radical availability

Another gas-phase HNO₃ formation reaction is the reaction with aldehydes [formaldehyde (FORM) and acetaldehyde (ALD2)]:
 FORM + NO₃⁻ --> HNO₃ + HO₂ + CO
 ALD2 + NO₃⁻ --> C₂O₃ + HNO₃

Primary sources of aldehydes in the Capital Region are from mobile sources and petrochemical plants

MODELLING: NITRATE FORMATION IN CMAQ

• At night, HNO₃ formation occurs through N₂O₅ (Dinitrogen Pentoxide),

 $NO_2 + NO_3^-$ --> N_2O_5 NO_3^- is formed through reactions involving NO_2 and ozone $N_2O_5 + H_2O$ --> HNO_3 $N_2O_5 + H_2O + H_2O$ --> HNO_3 Estimated water vapor by met. model becomes important.

- The final HNO₃ formation pathway in the CMAQ chemistry modules is the heterogeneous reaction probability (Y) of N₂O₅
 Likely most important for Capital Region, but parameterization not designed for below 0° C (frozen particles)
- Availability of ammonia (NH₃) to bind with gaseous HNO₃ to form particulate nitrate is important

Cooler and moister conditions favors NH₄NO₃ over gaseous HNO₃

RESULTS: PHASE I INITIAL FINDINGS

• Except NO₃, all species are over-estimated

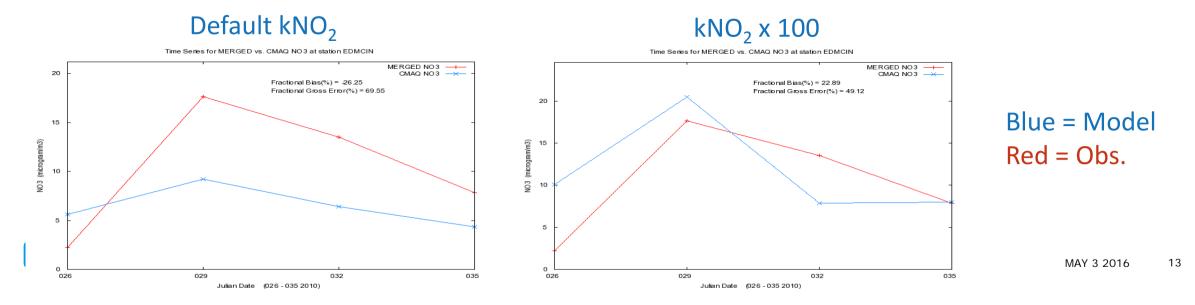
Species	Average Obs	Average Model	Fractional Bias (%)	Fractional Error (%)
EC	1.5	5.6	127.6	127.6
NH4	4.6	10.7	72.8	76.3
NO3	10.3	4.3	-58.9	90.6
OC	3.1	9.0	121.6	121.6
SO4	5.3	25.8	129.8	129.8

- Model performance evaluation
 - Individual PM species; compensating effects among species
 - Helps fine-tuning model through focused sensitivity cases

RESULTS: SENSITIVITY TESTS AND PHASE II

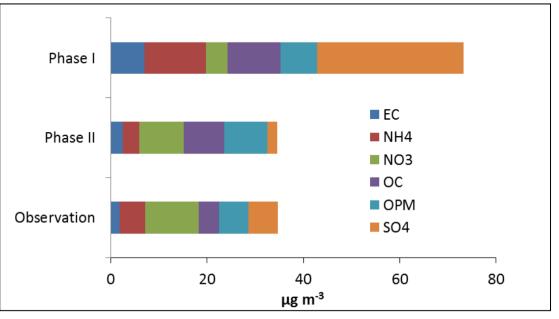
- Key findings from 10 sensitivity tests (Phase I)
 - Under-estimation of nitrate is not NH₃-limited
 - Don't have enough N₂O₅ to convert to HNO₃
 - More radicals are needed to improve nitrate performance
 - Predicted SO₄ is mostly secondary (conversion of SO₂); suspect WRF moister bias
- Phase II : revisit emissions inventory, meteorology and CMAQ assumptions
 - Improve emissions inventory (RWC, off-road)
 - WRF: remove moisture nudging which creates artificial cloud (7 tests)
 - CMAQ: heterogeneous pathway

RAMBOLL ENVIRON

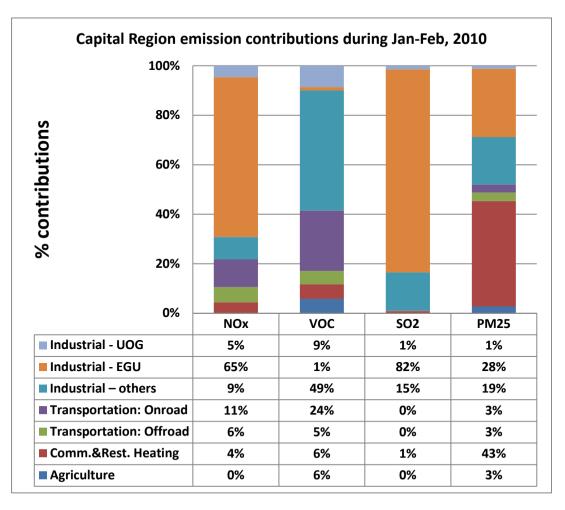

RESULTS: PHASE II FINDINGS

- HNO₃ pathway via heterogeneous reactions
 - a. $N_2O_5 \rightarrow 2.0 \text{ HNO}_3$
 - b. $NO_2 \rightarrow 0.5 \text{ HONO} + 0.5 \text{ HNO}_3$

```
kNO_2 = 3.0e-3 [1/min] x (S/V)
Kurtenbach et al. (2001)
```


Rxn a. is limited by N_2O_5 availability (not enough ozone) Rxn b. is important because of NO_2 is abundant

• Increasing kNO_2 by a factor of 100 increases NO_3 by a factor of two


RESULTS: PHASE II FINDINGS

• Significantly improved model performance in Phase II

- Abundant NOx in Edmonton limits ozone, hence limits reactions that rely on availability of radicals (such as $N_2O_5 \rightarrow HNO_3$)
- Need pathways that can go directly from NOx to HNO₃
 - Too low kNO_{2.het} for stagnant winter condition? Missing unknown pathway(s)?

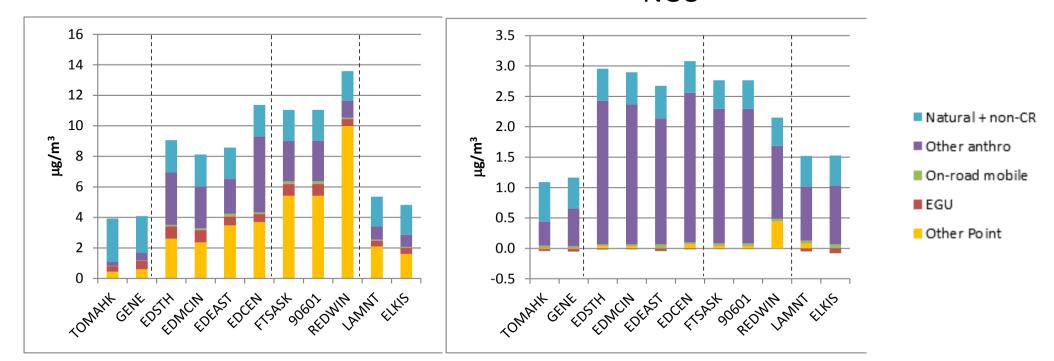
SOURCE ATTRIBUTION: CAPITAL REGION EMISSIONS (PHASE II)

Emissions attribution alone cannot tell a complete story

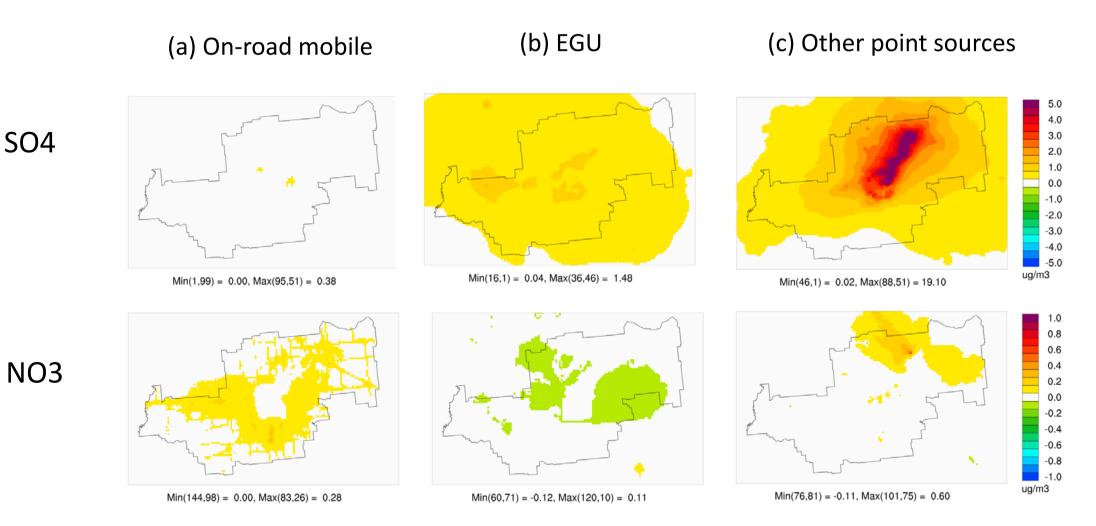
Other factors

- Source location
- Stack parameters
- Composition of VOC emissions
- Meteorological conditions

SOURCE ATTRIBITION: MODELLING


- Based on Phase I results (subject to poor model performance)
- Base Case setup with zero-out emissions to examine source contribution by sector
- Capital Region zero-out simulations:
 - On-road mobile (caveat: missing NH₃ emissions in Phase I)
 - Power Plant (EGU)
 - Other point sources all stationary point sources except EGUs and UOG
 - All anthropogenic sources
- This approach can extend to quantify source contribution for each industrial source or sector (e.g., UOG, Refineries)

SOURCE ATTRIBUTION: JAN-FEB AVERAGE


NO3

Example of contribution analysis at monitoring sites that can help identify major contributors

SOURCE ATTRIBUTION: JAN-FEB AVERAGE

Example of contribution analysis that can help identify major contributors to the region

MAY 3 2016 18

CONCLUSION

- PGM is a powerful tool to help understand complex air quality issues
- Modeling inputs are important (emissions and meteorology)
- Model performance evaluation is necessary
 - PM chemistry is complex
 - limited by the observation data
- Source apportionment analysis is useful for developing effective emissions control programs
 - Single sources, source groups such as sectors, and sector/geographic area combination

ACKNOWLEDGEMENT

- Funded by AEP
- Other staff at Ramboll Environ who participated in the study

For more details...

Nopmongcol, U., Johnson, J., Brasher, B., Rasmussen, DJ, Shah, Tj., Zagunis, J., Liu., Z., Morris, R. 2015.

"Formation of Secondary PM_{2.5} in the Capital Region Study."

https://open.alberta.ca/publications/formation-of-secondary-pm2-5