
2016 CPANS Annual Conference and General Meeting

AN INTEGRATED METHODOLOGY FOR MANAGING GREENHOUSE GAS (GHG) FROM FLARING & VENTING IN THE OIL & GAS SECTOR

May 3, 2016

2016@COPYRIGHT PROCESS ECOLOGY INC.

flareadvisor.com

OUTLINE

- Who we are
- Importance of Venting and Flaring Emissions Estimation
- Methodology
- FlareAdvisorTM Calculation Modules
- Case Study

PROCESS ECOLOGY

- Founded 2003, Calgary, AB
- Software Products:

- Directive 39 Reporting Software and Service
- Over 2000 Dehydration units (AB, BC, SK)
- **≻** FlareAdvisor™
 - Track and manage flared & vented volumes
- Key Competencies:
 - Engineering Consulting, Process Simulation
 - Process Engineering & Optimization
 - Air Emissions estimation and Management
 - Software Development

ACCURATE VENTING & FLARING EMISSION ESTIMATION

Issues:

- Accurately estimate flaring and venting emissions as required by current regulations:
 - AB Directive 60
 - BC Flaring and Venting Reduction Guideline (eliminate routine flaring by 2016)
 - SK Directive S-10 (Increased focus on Reduction)
- Effectively track and managed venting & flaring emissions (particularly non-metered and non-routine emissions)

ACCURATE VENTING & FLARING EMISSION ESTIMATION

Issues:

- Reduce emissions
 - Reduce methane emissions by 45% from 2014 levels by 2025.
 - Canada Federal GHG Reduction (30% below 2005 levels by 2030)
 - US (GHG emissions reductions of 26% by 2025)
 - World Bank Sponsored Global Gas Flaring Reduction (Zero Routine Flaring by 2030)
 - UNEP Oil & Gas CCAC Initiative (Methane emissions reductions)
- Establish the methane baseline

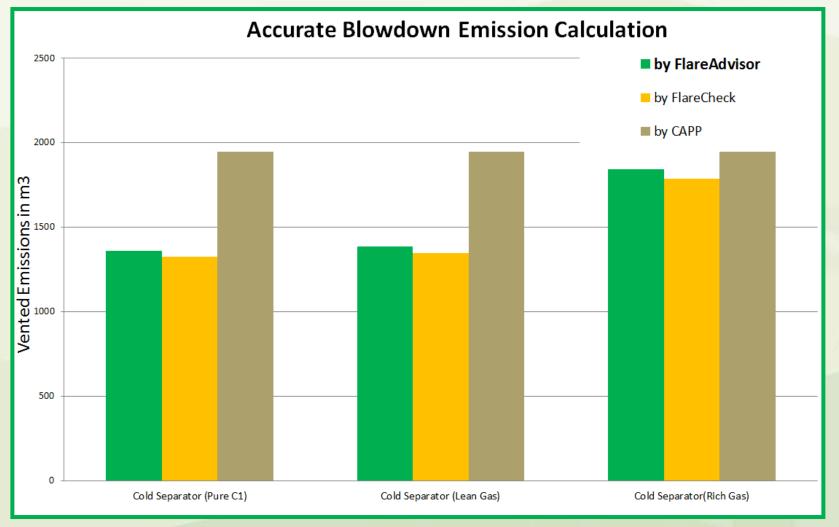
CALCULATION MODULES

Built-in Calculation Modules		
Equipment Blowdown	✓	
Pipeline Pigging	✓	
Compressor Start	✓	
Dehydrator Emissions	✓	
Tank Emissions	✓	
PSV Relief Emissions	✓	
PVRV Relief Emissions	✓	
Flare Maintenance Gas	✓	
Liquid Loading Emissions	✓	
Fugitive Emissions Totals	✓	
Combustion GHG Totals	✓	
Compressor Packing Vents	✓	

RIGOROUS ENGINEERING CALCULATIONS

- Backed up by Validation documentation
- First Principles Thermodynamics calculations –
 Most accurate method available
- Head-to-head comparison vs. current tools

NON-ROUTINE EVENT (VESSEL BLOWDOWN EMISSIONS)

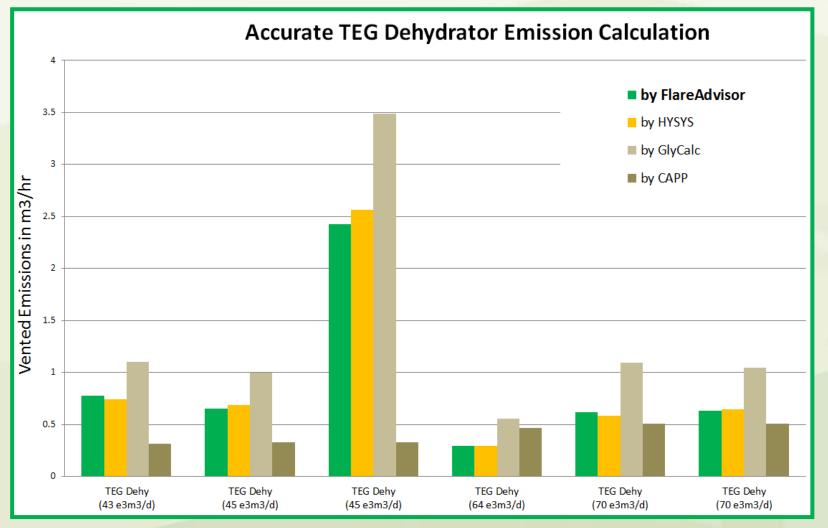


- Vessel orientation
- Vessel dimensional information (internal diameter, height/length)
- Liquid height in the vessel
- Operating conditions

VESSEL BLOWDOWN EMISSIONS

PROCESS ECOLOGY

CONTINUOUS SOURCE (TEG DEHYDRATOR)

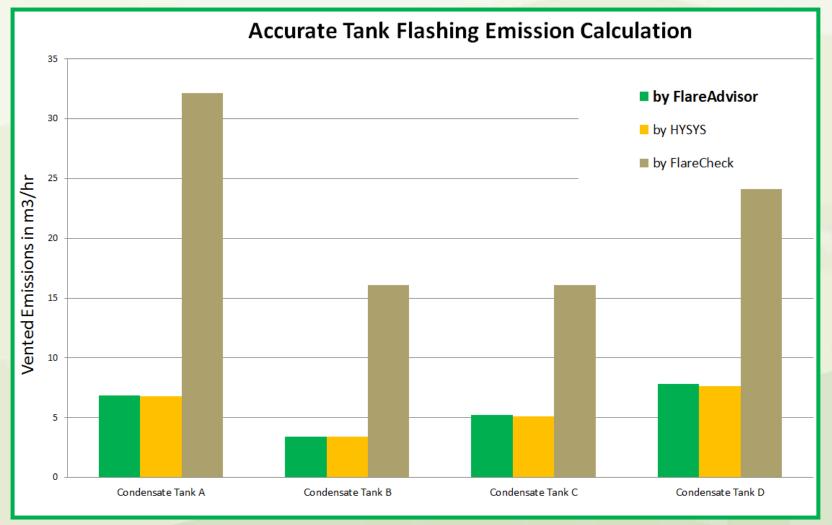


- CAPP document:
 - $V = Q(K_{SC} + K_{SG} + K_{GP})$
- GlyCalc:
 - Peng-Robinson EOS
- HYSYS Simulation:
 - Peng-Robinson EOS
 - Tuned Binary Interaction Parameters
- FlareAdvisor:
 - Statistical analysis
 - HYSYS Simulation Results
 - Over 2000 Dehydration units (AB, BC, SK)

TEG DEHYDRATOR EMISSIONS

PROCESS ECOLOG

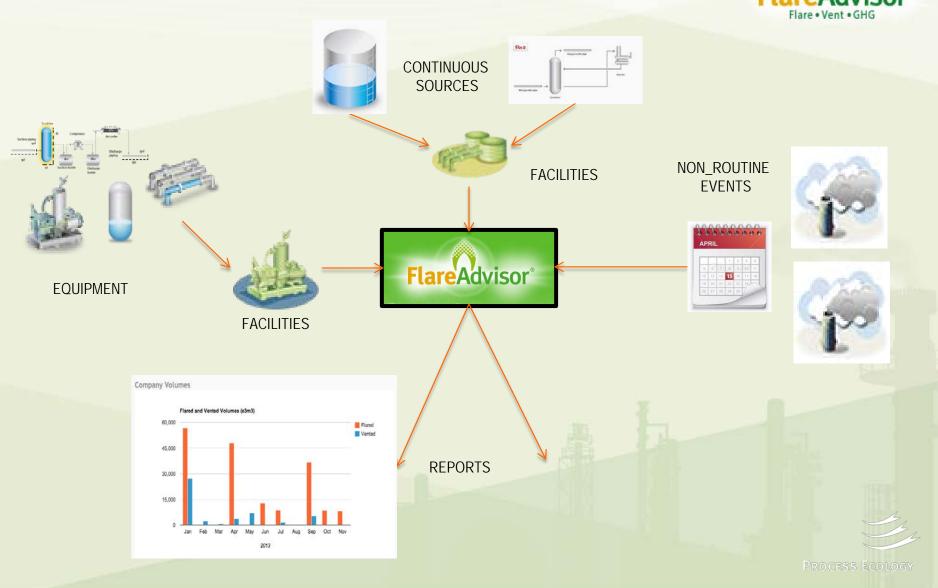
CONTINUOUS SOURCE (TANK FLASHING LOSSES)



- Flarecheck:
 - EUB rule-of-thumb (Solution Gas Factor)
 - $V = 0.0257 . V_{oil} . \Delta P$
- HYSYS:
 - Peng-Robinson EOS (flash calculation)
 - License Required
- FlareAdvisor:
 - Peng-Robinson
 - Built-in flash calculation

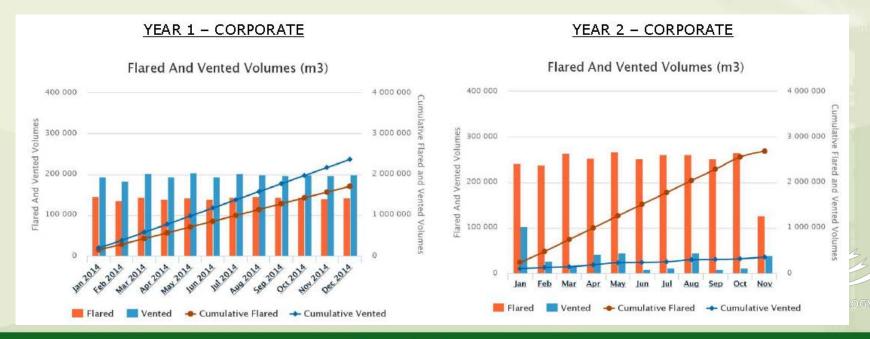
TANK FLASHING EMISSIONS

MAIN ELEMENTS



- Corporate and Facility Data Storage
- Non-Routine Flaring & Venting
- Continuous Flare/vent Sources
- GHG Emissions
- Reporting
- Administrator and Operator Views

FlareAdvisor™ Elements



CASE STUDY

 5 typical oil & gas facilities (2 compressor stations, 2 oil batteries, 50 MMSCFD gas plant)

Year	Venting Volume	Flaring Volume	GHG Emissions
1st Year	2,367 E3m3/yr	1,707 E3m3/yr	43,646 tonnes CO2E/yr
2 nd Year	357 E3m3/yr	2,684 E3m3/yr	14,852 tonnes CO2E/yr

CASE STUDY (EMISSIONS REDUCTION)

- SAVINGS: \$576k in one year
- Recording all Non-Routine Events
- Accurately calculating Continuous Sources of emissions
- Focused capital and operating spending to reduce emissions where it makes the most sense.

SAVE, COMPLY, REDUCE

- If you don't estimate, measure and track it you can't reduce it!
- SAVE \$\$ Identify and fix:
 - Problem venting areas, problem repeat flaring
 - Reduce excess gas for flares by comparison with Best Practices
- COMPLY Ease of Use
 - Stay on top of logs and reporting
 - Keep Regulators Happy
- REDUCE -Social License and Sustainability
 - Reduce Flaring and Venting
 - Reduce GHG Emissions
 - Establish a Methane baseline

Process Ecology

FlareAdvisor™

- Reduce Flaring, Venting and GHG Emissions
- Simplify Flaring and Venting Event Logging
- **Ensure Compliance for Air Emissions**
- Establish a Proper Baseline for Methane Emissions

MORE INFORMATION

Thanks to IRAP for Sponsoring this Research

- Want more Information?
- Contact laura@processecology.com

