





# Carbon capture and storage: ambitious targets for reductions in CO<sub>2</sub> emissions in Canada

Don Lawton Dept of Geoscience University of Calgary

AWMA CPANS presentation, December 14, 2010





### CCS - why do it ?

Currently: ~84 million bpd 86.4 million bpd Yields: ~ 35 million tpd  $CO_2$ **Total worldwide emissions**  $30 \text{ Gt/yr CO}_2$ 

THE COMING OIL BREAK POINT AND THE CHALLENGES FACING AN ENERGY DEPENDENT WORLD

### A THOUSAND BARRELS A SECOND



### GHG emissions

| Country       | CO <sub>2</sub> e<br>t/person/year |
|---------------|------------------------------------|
| United States | 19                                 |
| Australia     | 19                                 |
| Canada        | 18                                 |
| China         | 5                                  |
| Indonesia     | 2                                  |
| India         | 1                                  |

http://www.carbonplanet.com/country\_emissions



ARC RESOURCES LTD.

Bachu, 2009



### Canada's 2050 target for emissions reductions



Achieving 2050: A carbon pricing policy for Canada (2009), NRTEE

### CCS from large point CO<sub>2</sub> emitters







Courtesy Ian Potter, Alberta Research Council

### Properties of CO<sub>2</sub>



### **CCS potential in Alberta**



Source: Bachu and Stewart, Geological sequestration of anthropogenic carbon dioxide in the Western Canadian Sedimentary Basin, 2002

#### Capacity --- Injection rate --- Storage security --- Fate of CO<sub>2</sub>

After Bachu and Stewart, 2002 http://www.oilsands.alberta.ca/FactSheets/FS-CES-CCS.pdf

### Geologic storage of CO<sub>2</sub> EOR and depleted oil & gas reservoirs



Various means of CO2 geological sequestration.

- Geometry of reservoir is well known
- Physical trapping
  mechanism
- Known caprock
  integrity
- History matched
- Leakage potential through old wells

http://www.ags.gov.ab.ca/co2\_h2s/means\_of\_storage.html

### Weyburn-Midale CO<sub>2</sub> Project, Saskatchewan



Don White, NRCan

### Geologic storage of CO<sub>2</sub> deep saline formations



Various means of CO2 geological sequestration.

- Reservoir may not be confined
- Chemical/hydrodynamic trapping mechanism
- Seal integrity untested
- No history to match
- Deep, multiple seals
- Few wells for potential leakage pathways



http://www.ags.gov.ab.ca/co2\_h2s/means\_of\_storage.html









The proposed pipeline route (shown above in orange) will travel aproximately 100 kilometres north of Shell Scotford to the chosen injection locations.

http://www-static.shell.com/static/investor/downloads/news\_and\_library/quest\_ccs\_project\_overview.pdf

### Enhance Energy



### Swanhills Synfuels



<sup>(</sup>coal, char, ash; syngas production)

N+

http://swanhills-synfuels.com/iscg/overview/

### TransAlta Project Pioneer



### Alberta's 2008 CO<sub>2</sub> emissions reductions targets



#### http://environment.gov.ab.ca/info/library/7894.pdf

### CCS site selection

- Determination of CO<sub>2</sub> storage capacity in storage formation/complex
- Mapping and understanding seal quality and any containment risk for CO<sub>2</sub> storage
- Ability for sustained injectivity of CO<sub>2</sub> in the storage formation
- Understanding potential for unintended consequences (seismicity, pressure)
- Design and implementation of a monitoring program

### Risk from a regulatory perspective

- Pressure interference with existing hydrocarbon pools
- Pressure interference between adjacent CCS projects
- Brine migration through old wells
- Out of zone CO<sub>2</sub> migration to another storage formation (pore space)
- CO<sub>2</sub> migration to shallow aquifers through wells or natural pathways (faults, fractures)
- CO<sub>2</sub> escape into the atmosphere



Risk concerns from a public perspective

- Will CO<sub>2</sub> leak back into the atmosphere?
- Are there any environmental or safety concerns associated with CCS? Now *and* in the future?
- What happens to the carbon dioxide once it is underground? Will it stay there?
- Will CO<sub>2</sub> leak and contaminate groundwater ?
- Will CCS cause earthquakes?
- Will CCS reactivate faults?

Amanda Boyd, University of Calgary

Monitoring – risk identification/mitigation

Baseline geological characterization

site selection, static geological model, reservoir and seal properties, legacy wells

Containment monitoring

well integrity, caprock integrity, leakage at injection or observation well(s)

Conformance monitoring

CO<sub>2</sub> distribution in storage formation, out of zone migration, pressure distribution, consistency with modelling

Environmental monitoring

CO<sub>2</sub> migration to shallow aquifers, soils, or into the atmosphere



### CCS Risk





IPCC, 2005

### Physical trapping



IPCC, 2005

### **Residual trapping**



IPCC, 2005

### Solubility trapping



IPCC, 2005

### Mineral trapping



IPCC, 2005

Z8





© 2004. Her Majesty the Queen in Right of Canada, Natural Resources Canada. Sa Majesté la Reine du chef du Canada, Ressources naturelles Canada. USA/É-UďA

#### 29 NRCan, 2009



Total wells 49,880

Area 200 x 180 km 36,000 km<sup>2</sup>



### Abandoned wells All depths 9,587





### Abandoned wells > Mississippian 6,665





### Abandoned wells Precambrian 10



Measurement, Monitoring and Verification (MMV) - methods

### Baseline geological characterization

regional geology and hydrology; geophysical data, wells, cores, logs, seismicity.

### Containment monitoring

pressure/temperature/geomechanics logs, fluid sampling, seismic & microseismic.

### Conformance monitoring

geophysical/geochemical/geomechanics surveys, pressure/temperature

### Assurance (environmental) monitoring

soil and atmospheric surveys, water well surveys, shallow geophysics.







### Seismic monitoring example, Sleipner, Norway



36 After Chadwick et al., TLE, February, 2010

## Surface deformation monitoring from satellite data, Krechba, Algeria





Mathieson et al., TLE, February 2010

### **Observation well - operational monitoring**



### Carbon mitigation research







### **CMC research themes**

- A. Recovery, processing & capture
- B. Emerging & enabling technologies
- C. Secure carbon storage
- D. Accelerating appropriate deployment

### Shallow monitoring – CO<sub>2</sub> detection threshold



IPCC Summary for Policy Makers, Special Report of Working Group III, 2005

### CCS monitoring research & training centre



### Goals of CCS monitoring research centre

- Assess monitoring methods for CO<sub>2</sub> detection threshold at shallow to intermediate depths for CCS risk assessment
- A field site for development, testing and implementation of new CCS monitoring technologies
- A hub for hands-on field research for multiple ISEEE & CMC-supported research programs in CCS
- Training in CCS MMV for students and industry
- Information to regulators for CCS conformance metrics
- A site for public education about CCS
- Novel CO<sub>2</sub> capture on-site from a solid oxide fuel cell
- International partnerships



### Conclusions

- CCS is a viable and pragmatic means of reducing CO<sub>2</sub> emissions
- Western Canada Sedimentary Basin has a large potential to store CO<sub>2</sub>
- CCS is a bridging technology towards new energy paradigms
- Canadian activities have focused on CO<sub>2</sub> EOR
- Scale-up to meet targets will be a challenge.
- Secure CO<sub>2</sub> storage is critical to public acceptance
- Monitoring technology programs are being developed for verification of storage.

### Acknowledgements

- ISEEE, University of Calgary
- Carbon Management Canada
- CREWES, University of Calgary.
- Helen Isaac, Abdullah Alshuhail, Taher Sodagar
- NSERC, AERI
- PennWest Petroleum
- Alberta Research Council (now AITF)
- ARC Resources.
- GG Veritas, Schlumberger, Divestco, Geoscout

