Ozone Air Quality Standards and Vegetation: Where Are We?

Kevin Percy
K.E. Percy Air Quality Effects Consulting Ltd.
Fort McMurray, Alberta, Canada
www.kepercyltd.com

Presentation to A&WMA CPANS Luncheon, University of Alberta, Edmonton, December 3, 2010
OUTLINE

- Ambient O₃ concentrations
- Milestones in O₃ vegetation response
- Technologies used in dose-response
- Standards to protect vegetation
- Index evaluation
- Conclusions
2008 provincial 4th highest daily maximum 8h O\textsubscript{3}

Source: Tom Dann EC-NAPS
Yearly Variation in Ozone (ppb) from Alberta trend sites (1999-2008)

Source: Tom Dann EC-NAPS
Milestones in Ozone Forest Response

San Bernardino Mountains, CA (1980)
Key Historical Event I: The Discovery of Ozone’s Phytotoxicity to Forest Trees in the U.S.

Key Historical Event II: Population Changes Related to Ozone Documented in North American Forest Trees

Key Historical Event III: Ambient O\textsubscript{3} Decreases Tree Growth and Productivity

10-year-old southern Wisconsin *Populus tremuloides* clones differing in O\textsubscript{3} sensitivity near Millbrook, New York, where background O\textsubscript{3} is high.
Key Historical Event IV: O_3 Linked to Community Change

- Documented replacement of ponderosa pine (*Pinus ponderosa*) in San Bernardino Mts. by white fir (*Abies concolor*)

Experimental Technologies Used in O$_3$ Vegetation Response

Indoor Chambers (1970’s)

Open-top Chambers (1980’s-1990’s)

Ambient “Gradients”

Free-Air US and Germany 1998-2010
Automated (upper) and manual dendrometers monitor stem growth at time scales from minutes to days.

Common genetic material approach
(Karnosky et al.)

A. OTC study (Alberta, MI) 1986-96
B. Aspen FACE (Rhinelander, WI) 1998-2009
C. Ozone gradient study (Kenosha and Rhinelander, WI and Kalamazoo, MI) – 1995-2005
Common aspen genetic material reveals continuum of response mechanisms?

<table>
<thead>
<tr>
<th>Measurement</th>
<th>OTC</th>
<th>FACE</th>
<th>O₃ Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible symptoms</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Premature leaf abscission</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pest occurrence</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Stomatal conductance</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Height and diameter</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Clonal variation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Survival</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Reproduction</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓ = statistically significant O₃ effect found; - = not evaluated

Standards to Protect Vegetation

- **Standards-based**
 - Three-year average of annual 4th highest daily max. 8 h O_3 (EPA, CCME)
 - WHO 2005 guideline = 100 µg m$^{-3}$ (51 ppb) 8 hr mean
 - Alberta AAQO = 1 hr daily max. 82 ppb (160 µg m$^{-3}$) effective 1/2/2007
 - CASA PM and O_3 project team implementation?
- **Cumulative-based**
 - AOT40 (Führer et al., 1997)
 - SUM60 (Lefohn and Foley, 1992)
 - W126 (Lefohn and Runeckles, 1987)
 - Cumulative frequency distribution (Krupa et al. 1995)
- **Flux-based**

Proposed Federal Rule: Some limitations

1. Highest weighting given to highest O_3 concentrations
2. **Weighting decoupled from known plant physiology**
3. No rationale for arbitrary exponent 4403 and constant 126 ppm
4. W126 claims integration of uptake, O_3 exposure defence?
5. Developed under a different O_3 climate in California in the 1980’s
6. Developed largely from OTC experiments
7. **Statistical fit forced on biological response**
8. **Degree of W126 biological association not demonstrated in field**
9. Empirical, free-air evaluation shows lack of W126 biological association
10. Mathematically too complex: utility in standards?

2. Lack of synchrony in O_3 exposure and plant uptake

- Grünhage et al. 1994. Environmental Pollution 85, 125-129. “atmospheric conditions that facilitate the daily occurrences of peak (highest) O_3 concentrations in general do not coincide with the conditions that promote plant uptake.”

We have been at this a very long time!

Karnosky, Skelly, Percy, Chappelka 2007. Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on U.S. forests. Environmental Pollution 147, 489-506

Alberta: Which Index?

NAPS data from 7 rural AB stations with > 8 years of record
Index Evaluation in a Free-Air, Multi-Year Manipulative Experiment

Photo: aspen birch section Aspen FACE ring
The Aspen FACE experiment is examining the impacts of interacting elevated atmospheric CO₂ and O₃ on northern forest ecosystem structure and function.

Full Factorial, 3 reps:
- C, +CO₂, +O₃, +CO₂+O₃
- CO₂: 360 and 537 ppm
- O₃: 38 and 51 ppb

Growing season (daytime) fumigation from bud break to leaf drop (1998-2009)
Response of 5 aspen clones and white birch

Vertical inlet pipes (10 m)

Aspen (5 clones)
Aspen/maple
Aspen/birch

30 m dia

Prevailing wind (0.2 to 4 m sec$^{-1}$)
Central GHG facility for the 32 ha FACE site
Can a simple model be developed using an air quality standard O_3 predictors?

Response variable
basal area (BA)

Predictor variables (6)
O_3 (annual, 4th highest daily max. 8h conc.)
Temp (cumulative GDD to base 10°C)
Solar radiation (PAR seasonal sum)
Wind speed (seasonal average)
Precipitation (seasonal sum)
Soil moisture content (seasonal average, within stands)

30 cases (3 rep O_3 rings, 3 rep control rings) x 5 years (1999-2003)
5 aspen clones (n=498 trees) and birch (n=444 trees)
Growing season 4th highest daily max 8-h average ozone (ppb)

What 8-hour level might be protective?

Clone 216 mean cross-sectional area (sq m)

68-72 ppb

EPA NAAQS

CWS

Modified primary exposure-response function

Aspen Clone 216

Growing season 4th highest daily max 8-h average ozone (ppb)

Mean cross-sectional area (sq m)

95% CL derived from 3000 Monte Carlo scenario runs with O₃, WS, GDD

\[
Y = 0.00684 - 0.000031 \text{ 4th highest } O_3 - 0.00551 \text{ WS} + 0.000003 \text{ GDD}
\]
Aspen FACE O₃ exposure 1999-2003

EPA NAAQS
CWS

W126

K. E. Percy
Air Quality Effects Consulting Ltd.
Evaluation of O_3 metrics as single predictors of basal area growth over five years

<table>
<thead>
<tr>
<th></th>
<th>Aspen clone</th>
<th>white birch</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_3 index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8L (pos.)</td>
<td>271 (tol.)</td>
<td>216 (med.)</td>
</tr>
</tbody>
</table>

4th highest	0.354(0.078)	0.454 (0.021)	0.479 (0.017)	0.119 (0.112)
SUM06	0.228(0.078)	0.228(0.160)	0.163(0.187)	0.031(0.251)
AOT40	0.375(0.067)	0.213(0.138)	0.190(0.159)	0.000 (0.877)
Max1h	0.371(0.069)	0.197(0.152)	0.250(0.109)	0.331 (0.015)
W126	0.647 (0.006)	0.618 (0.003)	0.648 (0.002)	0.376 (0.009)

Data are R sq. adj. (P value)

Predicted aspen growth loss during 2001-2003

We have measured response close to predicted using common genetic material from Aspen FACE grown in 3 growth/biomass trials.
Conclusions

- O_3 is a concern in some regions of Alberta
- Alberta should re-consider current O_3 82 ppb 1 hr AAQO
- SUM60, AOT40, W126 not suitable
- CWS form, averaging time, metric target level is suggested
- CWS biological association with 2 species, 5 genotypes over 5 years under free-air conditions, large inter-annual climate variation, stand dynamics, pest activity demonstrates utility
- changing averaging time to annual to protect sensitive vegetation
Upcoming Air Pollution Meetings Fort McMurray

 – May 23
 – Industry, source to sink papers, 1 hr Panel Discussion
 – Book (18 chapters) to be published in Elsevier Developments in Environmental Science Series

• 43rd Air Pollution Workshop (www.apworkshop.org)
 – May 24-25
 – One-day Field Trip May 26
Thank You!