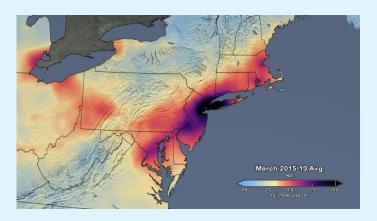
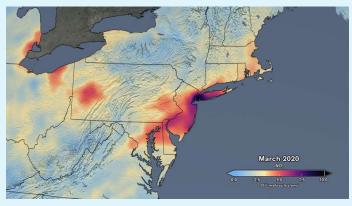


Investigating the impact of COVID-19 public health actions on NO₂ levels

Yayne-abeba Aklilu, Ryan Duruisseau-Kuntz, Alexander Salm, Casandra Brown, Greg Wentworth, Travis Tokarek

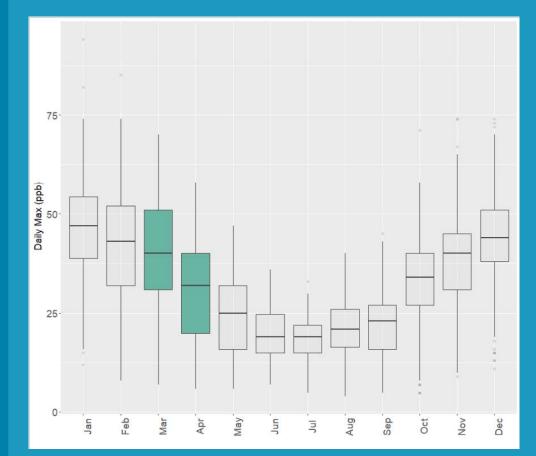
2023 CPANS Annual Conference


Albertan


Nitrogen dioxide

Public health action and changes in NO₂

- Worldwide public health actions to limit the spread of COVID-19
 - included actions to reduce mobility
 - One secondary effect of these measures was a reduction in air pollution
 - Most notably NO₂
- Satellite measurements of NO₂
 - One of the first to illustrate observed changes



NO₂ Troposphere column density NE USA Adopted from https://svs.gsfc.nasa.gov/

Albertan

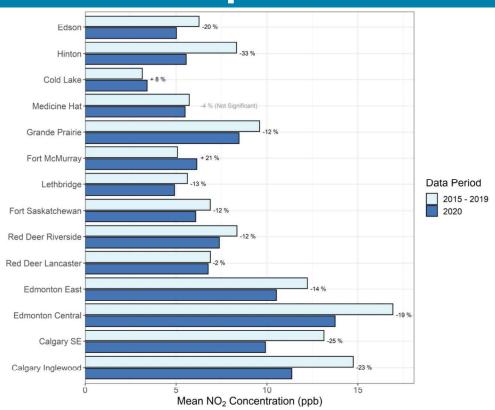
Challenges in identifying changes in NO_{2}

- Ambient concentration is affected by
 - Emissions
 - Atmospheric processes
 - Transport, dispersion
 - Chemistry/transformation
 - Deposition
- Spring is a period of transition
 - Higher NO₂ in winter → lower
 NO₂ in summer
- Comparisons to historical data
 - needs careful design due to year-to-year variability

Seasonal variability of daily maximum NO₂ at Calgary Inglewood

Albertan

Methods used



Comparison to Historical

- Input data
 - Five years of historical data (2015-2019)
 - To account for variability due to meteorology
 - Excluded weekends and holidays
 - Measures were thought to predominantly affect weekday traffic patterns and volume
 - Removed samples known to have been impacted by exceptional events
 - Examined two periods
 - A: March 16-April 24 Focus of presentation
 - B: April 27 June 12

Bulk comparison

Mean NO₂ concentrations for March 16 - April 24

7

- Observed differences* were variable
- NO₂ Decrease in 2020
 - Observed at most sites
 - Ranged from 2 to 33% (1-4 ppb)
- Increase in 2020
 - Fort McMurray (Patricia McInnes) and Cold Lake
- No significant change
 - Medicine Hat

*Mann Whitney U test used to test significance (p<0.05)

Albertan

Were observed changes limited to select hours of the day?

Thus, could the observed difference be muted for bulk comparisons?

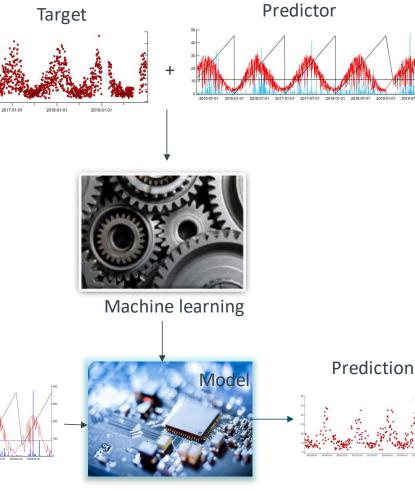
Albertan

Diurnal comparison

- Bootstrapping* to determine
 - Mean historical concentration (\bar{X}_{hr}^*) and 95% confidence intervals for each hour of the day
 - *1000 samples with replacement
- NO₂ difference $\overline{X}_{hr}^{2020} \overline{X}_{hr}^{*}$
 - Most prominent in the morning
 - e.g., Inglewood (hour 5 to 10)
 - Mean difference: 7-9 ppb

Could business as usual machine learning predictions of 2020 concentrations provide an improved measure of changes in NO₂?

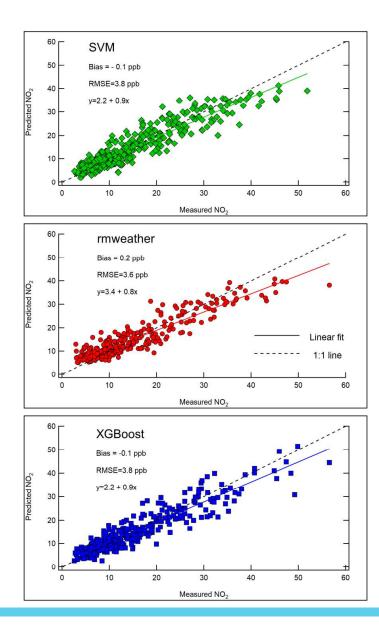
Albertan


Predicting business-as-usual

11

Supervised learning

- Training data
 - Calgary Inglewood and supporting sites
 - 80% (April 2015 December 2019)
 - Target variable (NO₂)
 - Predictor variables
 - Meteorology (Wind, RH, Temp, Pressure, Solar Radiation, Precipitation)
 - Temporal (Day of week, Julian date, Month, Day of study)

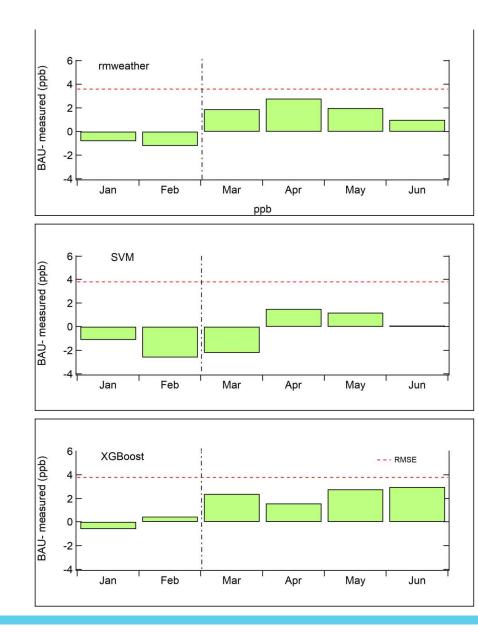

Training data

Test data

Model Performance

- Test data
 - Model selected
 - 20% of 2015 2019 data
- Test runs
 - Conducted independently
- Results
 - SVM ~ XGBoost ~ rmweather
 - Negligible bias
 - RMSE ~ 4ppb
 - Underpredict elevated values*
 - rmweather and XGBoost overpredict low values

*XGBoost does a little better



Business as usual predictions

- Prediction period
 - January June 2020 (inclusive)
- Difference calculation
 - [BAU] [Measured]
- Results

14

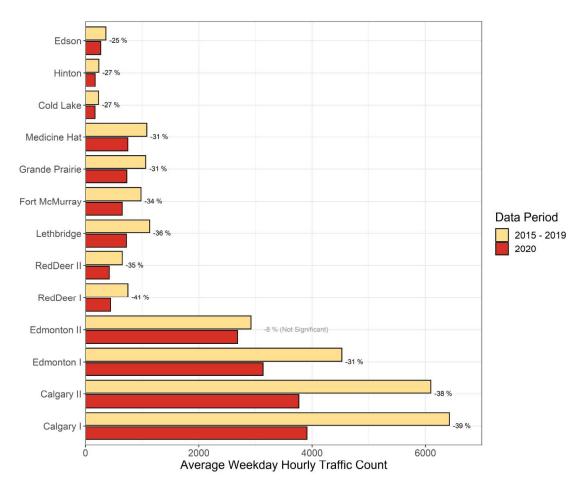
- Unaffected period Jan to Feb 2020
 - diff low or negative (BAU < measured)
 - Models underpredicted higher values typically observed in the winter
- March to April 2020
 - Difference 2-3 ppb (except for March -SVM)
 - ~ bulk comparison to historical data
 - Observed difference < RMSE

Conclusion

- Comparison to historical NO₂ data
 - Bulk comparison
 - Resulted in a marginal difference for most monitoring sites
 - Diurnal evaluation illustrated
 - Differences between 2020 and historical data varied by time of day
 - Notable changes in NO₂ during the morning hours
 - Minimal difference for the remainder of the day
 - Likely resulting in the marginal difference observed in the bulk comparison

Mhostan

Conclusion


- Comparison to Machine Learning predicted BAU
 - Model performance
 - The three different algorithms had comparable test results
 - RMSE ~ 4ppb
 - All models underestimated elevated concentration \rightarrow underpredicted wintertime concentrations
 - Measure of changes March and April 2020
 - The observed difference (BAU Measured) ≤ to prediction error (RMSE) of a model
 - The three models selected did not provide an improved measure of changes in NO2

16

Questions?

Change in weekday traffic. Data from Alberta Transportation. Data include sample period between March 16 - April 24 (excluding weekends and holidays). Significance was tested using Mann Whitney u test (p value ≤ 0.05). This test compares the distribution of the two data sets.

19