ERCBflare

Update to the Sour Gas Industry Screening Tool

Brian Zelt, Ph.D., P.Eng., Zelt PSI Mike Zelensky. M.Sc., P.Eng., ERCB & Gerald Palanca, C.E.T., ERCB

Outline

- 1. Pirective 060 update overview
- 2. ERCBflare update overview

Disclaimer

 Certain statements contained in this presentation constitute forward-looking information. The information released in this presentation is preliminary only and may be subject to change. The following information is provided for guidance and summary purposes only and is not an exhaustive description of ERCB requirements relating to a given topic or subject area. Operators and licensees must at all times comply with and should consult all applicable ERCB requirements before undertaking any activity.

7060 - the need for change

- Negative public perception regarding flaring and the need to reduce volumes
- Current dispersion modelling criteria is intended for continuous flaring
- · Inconsistent risk based criteria
- · Screening tool is out of date
- · Recent updates in science
- Inconsistent dispersion modelling assessments

P60 - *NEW* Non Routine Flaring

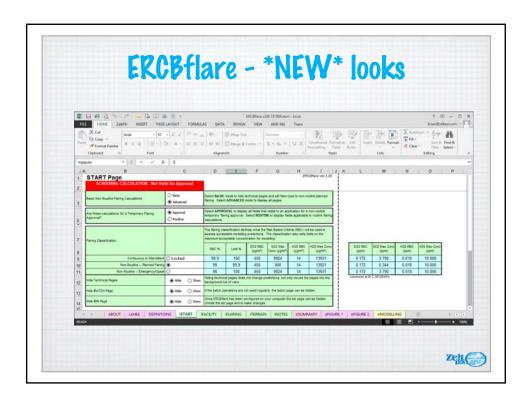
- Remove the need to assess cumulative effects on ambient air quality for well tests and non routine flaring
- Applies to all non routine flaring events with H_2S >1% or > 1 t/d sulphur except if 1 t of sulphur and < 15 min
- Risk Based Criteria
- · Logging requirements
- Post modelling requirements

P60 Updates

- Released in early 2013
- Upon sanctioning this framework operators must assess non routine flaring within:
 - within 1 year for EPEA facilities
 - within 2 years for compressor stations, dehys, batteries
 - within 4 years for well sites
 - effective immediately for temporary flares/well tests

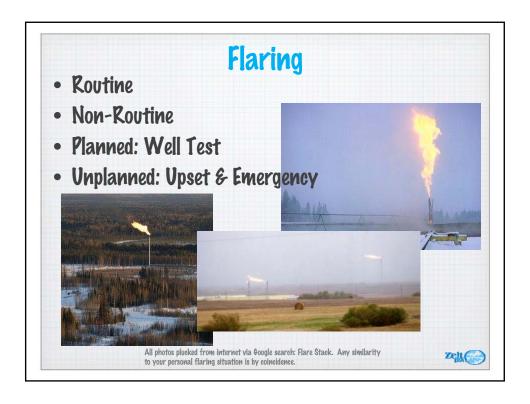
P60 Updates

The following documents will be made available in 2013:


- AESRD Non-Routine Flaring Management: Modelling Guidance
- Pirective 60 (2013)
 - ERCBFlare User Guide
 - ABFlare User Guide
- CAPP Framework Sour Non-Routine Flaring

ERCBflare Tool Highlights

- Required Updates
 - Keeping up to pace with ERCB P060
 - Updatable air dispersion model
 - Screening predictions consistent with refined predictions
 - Getting from A to B to C in air dispersion modelling
- Features Removed
 - Screen3
- Features Changed/Modified
- New Features
 - · AERMOD/AERSCREEN
 - SOZ and HZS Emissions



Acknowledgements

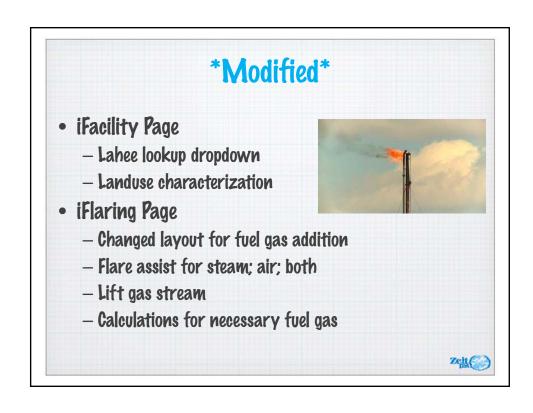
- Funding for updates and components of the ERCBflare tool:
 - PTAC-Alberta Upstream Petroleum Research Fund (AUPRF)
 - Suncor
- ERCBflare tool
 - Peveloped by M.Zelensky & Zelt PSI
- · ABflare tool
 - Peveloped by Zelt PSI, M.Zelensky and Exponent

REMOVED

- ERCBscreen3
 - SCREEN3 predictions are not consistent with AERMOD nor CALPUFF
 - SCREEN3 cannot be relied upon to be a conservative prediction
 - SCREEN3 is no longer a regulatory model and is not updated
 - SCREEN3.dll requires distribution in both 32-bit and 64-bit versions
- Minimum fuel gas calculations
 - These were dependent upon the SCREEN3 calculations and AENV screening meteorology data

REMOVED

- ERCB low risk prediction (99% on time)
 - This screening calculation was dependent upon the AENV meteorology data set(s) and SCREEN3 predictions
 - Percentiles are highly dependent upon site specific meteorology and terrain



Modified

- · Renamed all pages
 - i xxx are INPUT pages
 - o xxx are OUTPUT pages
- Entry fields that are not applicable are grey ed out

Modified

- Defaults entries are required regulatory applications
- Non-Default entries are allowed for recreational use
- iNotes page (previously "Attachments")
 - AT LEAST answer these questions...

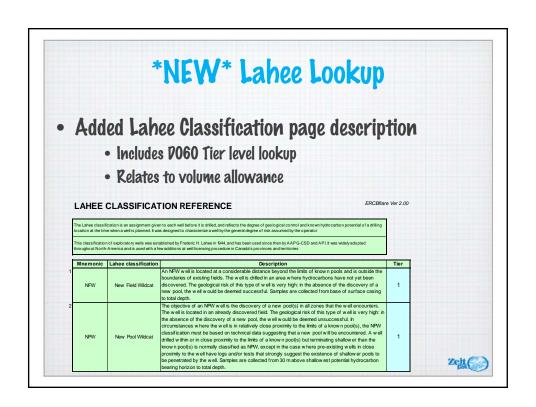
...or the application will be returned

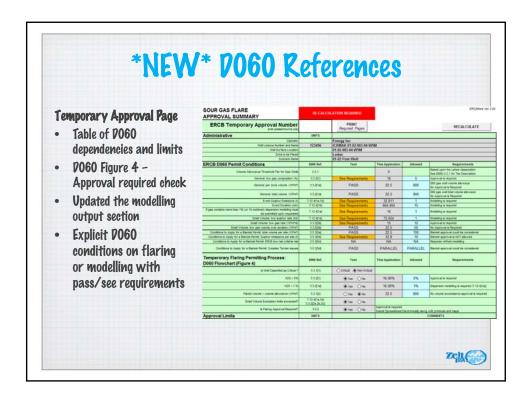
Modified iNotes Page

- 1. For permanent facilities describe the flaring event modelled including the type of facility, pipeline segments or vessels to depressurize (if applicable), PSV size, etc.
- 2. Estimate the frequency of the flaring event
 - a) number of events per year;
 - b) duration of each event;
 - c) total number of hours per year
- 3. Pescribe attempts to reduce or eliminate the flaring event(s) if applicable
- 4. State any engineering assumptions you've made in completing the entries for EKCBflare

Modified & *New*

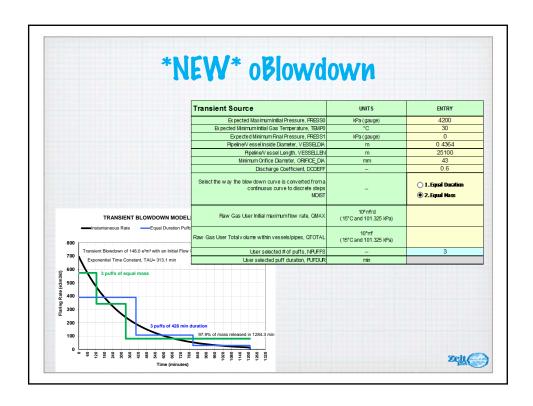
- Fuel Gas
 - Shows required amount of fuel gas
- · Lift Gas
 - User defined stream composition
- Flare Assist
 - Steam assist & Air assist




NEW iStart Page

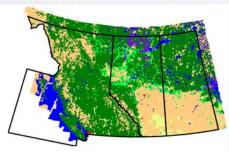
- Specify NON-ROUTINE FLARE ASSESSMENT
 - Planned Risk Based Criteria
 - Upset/Emergency Risk Based Criteria
 - Required 3-Modelling Rates
- Specify ROUTINE FLARE ASSESSMENT
 - Continuous Std. 99.9th Criteria
 - Required Max-Modelling Rate
- RBC with % not to exceed
- MAXIMUM (or %) cannot exceed

Basic Non-Routine Flaring Calculations	O Basic 2	Select BA SIC mode to hide technical pages and set flare type to non-routine planned flaring. Select ADVANCED mode to display all pages.				outine planned	
Are these calculations for a Temporary Flaring Approval?	Approvel Routine	Select APPROVAL to display all fields that relate to an application for a non-routine temporary flaring approval. Select ROUTINE to display fields applicable to routine flaring calculations.					
Flaring Classification		The flaring classification defines w hat the Risk Based Oriteria (RBC) w iil be used to assess acceptable modeling predictions. The classification also sets limits on the maximum acceptable concentration for modelling.					
-		RBC %	Limit %	SO2 RBC (µg/m³)	SO2 Max Conc (µg/m³)	H2S RBC (µg/m²)	H2S Max Conc (µg/m³)
Continuous or Intermittent	○ Locked [®]	99.9	100	450	9924	14	13931
Non-Routine Planned Flaring	•	99	99.9	450	900	14	13931
Non-Routine Emergency/Upset	0	90	100	450	9924	14	13931
Hide Technical Pages	○ Hide 2 ⑥ Show	Hiding technical pages does not change predictions, but only moves the pages into the background out of view.					
Hide iBATCH Page	○ Hide 2 @ Show	If the batch operations are not used regularly, the batch page can be hidden.					
Hide IBIN Page	○ Hide ② ● Show	Once EROBflare has been configured on your computer the bin page can be hidden. Unhide the bin page and to make changes.					



NEW oBlowdown Page

- Additional input section for transient blowdown calculations
- Allows override for user entry of max flow & volume
- Transient blowdown model is an exponential curve based upon the Max Flow, Volume and final pressure
- Built-in processing for flaring less than one-hour duration

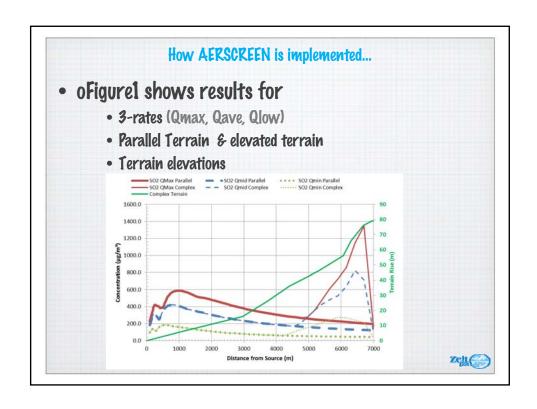


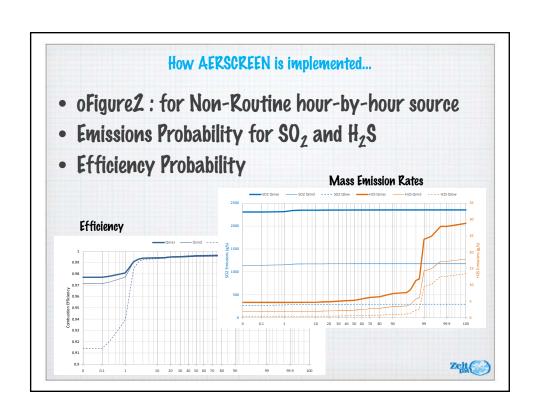
NEW AERSCREEN Modelling

- AERSCREEN replaces SCREEN3 for ERCBflare modelling
- AERSCREEN is a specific mode of operation of AERMOD
 - All winds blow in direction of every receptor
 - Meteorology is a μ -meteorological matrix with variation in:
 - Heating; Temperature; u*, w*; Monin-Ubikov length
 - User selection of Bowen Ratio, surface roughness, temperature range, Albedo
 - AERSCREEN performs lookup of meteorology conditions related to maximums

How AERSCREEN is implemented

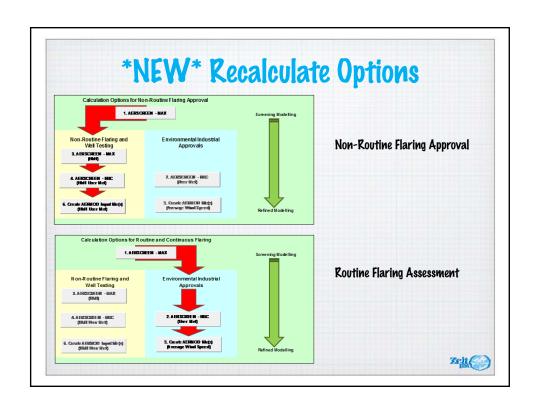
- ERCBflare uses 8-default meteorology files
 - Deciduous; Coniferous; Swamp; Grassland; Grassland;
 Water; Urban; Desert lat present 0% is desert!
 - Landcover is decided by flare location and lookup


	Description	Alberta Fraction
10	Coniferous Forest	34.8%
20	Deciduous Forest	14.7%
30	Cultivated Land	29.4%
40	Grassland	9.1%
50	Urban	0.5%
60	Swamp	7.9%
70	Water	3.7%
80	Desert Shrubland	0.0%



How AERSCREEN is implemented...

- · Meteorology files are 3-month and 4-season
 - Winter (Pec-Jan-Feb)
 - Spring (Mar-Apr-May)
 - Summer (Jun-Jul-Aug)
 - Fall (Sep-Oct-Nov)
- Characterization is based upon AEW AQMG recommended AERMOD
- oFigure1 shows as a function of distance and terrain
 - concentrations,
 - windspeed at max concentration,
 - mixing height at maximum concentration, and
 - PG stability at maximum concentration



NEW Bridges to Refined • To allow 'seemless' transition from screening modelling to refined modelling: — Refined-Screening model within ERCBflare — Output of AERMOD ready input files — Same Processing As ABflare (refined modelling)

- Switch to save input files

zeh 💮

NEW Bridges to Refined Modelling

NON-ROUTINE

- Allow hour-by-hour source conditions (with simplification
- Allow site specific meteorological data file
- Creates a variable source file for use with ACRA ACRA full mode
 - Full terrain
 - Site specific meteorology

ROUTINE

- Allow site specific meteorological data file
- Creates a AERMOD ready
 - Full terrain
 - Site specific meteorology

NEW Screening Modelling

NON-ROUTINE

- Screening Met → MAX CONCENTRATION
- User Met (5vr) → RBC
- Specific Month (uses User Met, 5yr, and 3-month window) -> RBC

ROUTINE

- Screening Met → MAX CONCENTRATION
- User Met (5vr) → 99.9th

NEW SO2 and H2S

- ERCBflare uses flare efficiency model
- Efficiency is a function of:
 - Heating value
 - Meteorology
- · Source parameters are function of efficiency
- SO_2 emissions are worse case 100% conversion
 - No credit for in-efficiency
- H₂S emissions based upon in-efficiency
 - Assumes worse case fuel gas stays as fuel gas, \therefore H_2S stays as H_2S

• SO₂ source parameters based upon heat and momentum energy balance • H₂S source parameters based upon momentum of stripped gas and stripped heat Wind flowing past the flame strips are gases—combuston grant the flame strips raw gases—combuston grant the flame strips are gases—combuston grant the flame strips and the flame strips heat by convection—energy for in-efficiency component plume face SO₂ SO₂

Flare Modelling Screening vs Refined

SCREENING

- ERCBflare Tool
- AERSCREEN (AERMOD)
- Gaussian Plume Model
- Simplified Hour-by-hour variable source
- Terrain effects by plume height adjustment

REFINED

- ABflare Tool
- · CALPUFF
- · Lagrangian Puff Model
- Complete hour-by-hour variable source model
- Terrain effects by terrain avoidance and/or plume height adjustment

Non-Routine Flare Modelling Modelling Guidance

Rate Category	Modelling Refinement Level	Non-Routine Flare Source Description		
Continuous	1	A steady (constant in time) non-routine flaring rate that: lasts 1 hour to several days, flare durations approaching one day should be modelled as a continuous flare use 3 constant rates to represent the maximum, average and low emission rates.		
Short-Term Steady	2	A steady (constant in time) non-routine flaring rate that:		
Exponential Transient (blowdown)	3	A transient (time-varying) non-routine flaring rate that: lasts several minutes to several days, represented by an exponentially decreasing emission rate sequence of puffs of specified duration, typical of a single stage blow down (vessel or pipeline).		
User-Defined Transient (blowdown)	4	A transient (time-varying) non-routine flaring rate that: lasts several minutes to several days, represented by random sequence of emission rates and durations determined by the user, typical of a multi-stage blow down (vessels and pipelines).		

	Non-	Coutin	ne Fl	are Modelling
	I	Mode	lling	Guidance
Rate Category	Source Model	Dispersion Model	Refinement Level	Source Modelling and Post Processing Requirements
Continuous		Plume *	1	The emission rate(s) is modelled as if the source emitted continuously. Use continuous source modelling methodology according to DETAIL A. Post processing for time averages is not required.
Continuous	Continuous	Puff *	1	The emission rate(s) is modelled as if the source emitted continuously. Use continuous source modelling methodology according to DETAIL A. Post processing for time averages is not required.
	Continuous	Plume	1	Source emission rates are determined based upon the actual duration of the short-term event. Use continuous source modelling methodology according t DETAIL A. Time averages for 1h are post processed according to DETAIL B
Short-Term Steady		Puff	1	Source emission rates are determined based upon the actual duration of the short-term event. Use continuous source modelling methodology according to DETAIL A. Time averages for 1h are post processed according to DETAIL B
	Finite Duration Puffs	Puff *	2	Source emission rates are determined based upon the actual duration of the short-term event. The source modelling is conducted according to DETAIL C Time averages are post processed according to DETAIL D.
	Continuous	Plume	1	Source emission rates are determined according to the blowdown exponential transient in terms of a sequence of short-term steady emissions. Use continuous source modelling methodology according to DETAIL A. Each emission is assessed independently and the results of all of the assessments are post-processed according to DETAIL E.
Exponential Transient or User-Defined Transient		Puff	1	Source emission rates are determined according to the blowdown exponential transient in terms of a sequence of short-term steady emissions. Use continuous source modelling methodology according to DETAIL A. Each emission is assessed independently and the results of all of the assessments are post-processed according to DETAIL E.
	Sequence of Finite Duration Puffs	Puff *	3 or 4	Source emission rates are determined based upon the actual duration of the short-term event. Source emission rates are determined according to the blowdown exponential transient in terms of a sequence of short-term steady emissions. The source modelling is conducted according to DETAIL F. Time averages are post processed according to DETAIL D.

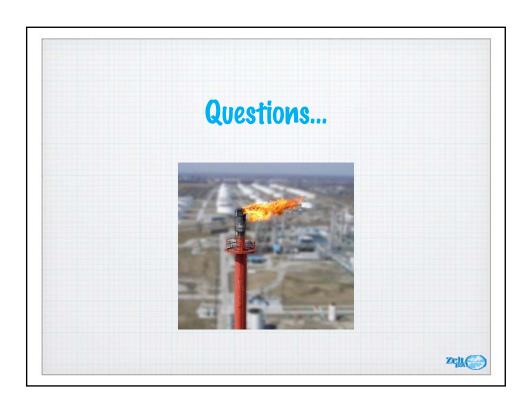
NEW Geek Backdoor

Several backdoor options are made available for recreational use

Advanced Technical Switches

Description	Variable	Units	Inputs	Default
Re-create run.bat file each time (1-Yes, 0-No)	mrunbat	-	1	0
Add pause to run.bat file (1-Yes, 0-No)	mpause	-	0	0
Keep input files (1-Yes, 0-No)	mkeep	-	0	0
AERMOD input files- uses 0,0 origin (1-Yes, 0-No)	mrelloc	-	0	0
A ERMOD input files-export receptors (1-Yes, 0-No)	mexprec	-	0	0

Non-	Default	Settings
------	---------	----------


Description	Variable	Units	Inputs	Default	Comment
Ambient Temperature	Та	C.	5	5	
Average Ambient Wind Speed	Ua	m/s	3.5	3.5	
PG Stability Class	iPG	-	4	4	
SO2 1h Air Quality Objective	OBJ_SO2	µg/m³	450	450	
H2S 1h Air Quality Objective	OBJ_H2S	hg/w ₃	14	14	
Run Flags	MYRUN	-	0	0	
User Period Selection (Annual or Month)	MFLMON	-	1	1	
Blow down Distribution of Mass Option	MDIST	-	2	2	
Blow down User Entry of Qmax	Qmax	-	blank	blank	
Blow down User Entry of Qtotal	Qtotal	-	blank	blank	
Land Use around the well site	WELL_LU	-	5	1	NON-DEFAULT SELECTION

Release Pate

- To coincide with the release of the ERCB D060 Updates
- Install package or ZIP file
- Excel 2007 or greater (to be determined...)
- · Draft User Guide
- Refined Model ABflare
 - Somewhat dependent upon final decisions for ERCBflare for consistency

