Distributed low-cost sensor network for air quality measurements and wildfire monitoring at remote communities

Quamrul Huda, Nubal Manhas, Lei Yang Northern Alberta Institute of Technology

2025 CPANS Annual Conference

Air & Waste Management Association Canadian Prairies and Northern Section May 21, 2025

Presentation Layout

- Introduction
- Low-cost Air Quality Sensor
- Wildfire Detection by low-cost sensors
- Community-based Monitoring
- Summary
- Acknowledgments

Introduction

- Low-cost air quality sensors provide opportunity of wide area distributed monitoring.
- Custom integration of these sensors can provide a tool for near real-time information on wildfire events.
- Remote areas can be monitored through low-cost systems.

Low-Cost Air Quality Sensor

Polar plot of PM_{2.5} data collected by *a* PM2.5 sensor indicates upwind sources at northeast.

RESEARCH

Low-Cost Sensor Deployment

Weighted mean polar plot of $PM_{2.5}$ indicates strong contributions from the highway 14 located in the south

A&WMA's 112th Annual Conference & Exhibition Québec City, Québec, June 25-28, 2019, Paper # 593487

Low-Cost Sensor Performance

- Consistent under-bias in sensor reading for Module A at T_{ambient} < -20 °C.
- Good correlation of same sensor with FEM analyzer for Module B at T_{ambient} < -20 °C.
- Module B is a later version with improved micro-station architecture.

Low-Cost Sensor Performance

Module C

PM_{2.5} (left) and Ozone (right) data in comparison to FEM Analyzers

Wildfire Detection Accuracy

Elevated PM2.5 during wildfire smoke. Elevated plume originated from wildfire in the west and southwest of Edmonton

RESEARCH

Prescribed Fire Monitoring by low-cost sensors

A network of 5 sensor modules deployed at prescribed wildfire

Prescribed Wildfire Monitoring

- Background PM_{2.5} levels were low, and below the sensor minimum detection level (MDL) in most of the cases.
- No nearby emission sources.

Air Quality monitoring during prescribed wildfire

Fire Weather Condition Monitoring

Diurnal cycle of Temperature and Humidity.
Relatively warm and dry condition at the time of fire.

Fire Spread During Prescribed Fire

Flaming

Smoldering

Time lapse since ignition:

1 minute

3 minutes

6+2 minutes

Fire spread from south to north perimeter in 6 minutes

Smoke (PM2.5) Detection

- Time delay for smoke to reach sensor.
- Duration of enhancement relates to Flaming duration.
- Time for smoke to reach at sensors are different.
- Smoke intensity levels are different.
- Three distinct wavefronts of smoke.
- Smoke decays at different rates

Smoke Plume Pattern

Smoke A

Time: 18:04

Smoke B

Time: 18:25

Smoke C

Time: 18:43

Smoke intensity varies at spatially

Smoke pattern varies with time

Quantification of emissions

Flow of PM_{2.5}:

$$Q = \int_{l_1}^{l_2} vn(l) H dl,$$

Total Emission:

$$M_{PM_{2.5}} = \frac{Q}{n(t)_{max}} \int_{t_0}^{t_0+T} n(t)dt$$

Combustion Phase	Smoke-Wave	PM _{2.5} Mass M (kg)	Total Emission (kg)
Flaming	A	15.2	15.2
Smoldering	B C	3.0 13.3	16.3

Community-based Monitoring Plan

Wildland fire is a frequent event in many of the Alberta communities which are not covered under provincial air quality monitoring network.

Sensor Integration for Wildfire Detection

Functional diagram of sensor system

Breadboard prototype system

Real-time Monitoring of Air Parameters

Distributed Sensor Network

A distributed network of low-cost sensor systems can be a solution for community-based air quality and wildfire monitoring

Summary

- Low-cost air quality sensors can be custom integrated for remote deployment.
- Detection accuracy is sufficient for wildfire monitoring.
- Fire and smoke behavior can be studied through low-cost sensor deployment.
- Remote communities can implement smaller network for wildfire detection and mitigation

Acknowledgments:

- Alberta Metis Community
- Government of Alberta
 - Innovation Fund Program
 - Naomi Tam, Environment & Protected Areas
 - Dave Schroeder, Agriculture & Forestry
- University of Alberta
 - Prof. Masum Hossain
 - Capstone Student Program
- Canadian Forest Service
 - Dan K. Thompson
 - Ginny Marshall

Question & Answer

Additional Queries: QHUDA@NAIT.CA

