

Characterization of indoor and outdoor sub-micron particles (PM₁) in Edmonton homes

AWMA CPANS Edmonton Luncheon University of Alberta Faculty Club, Edmonton, AB April 1, 2016

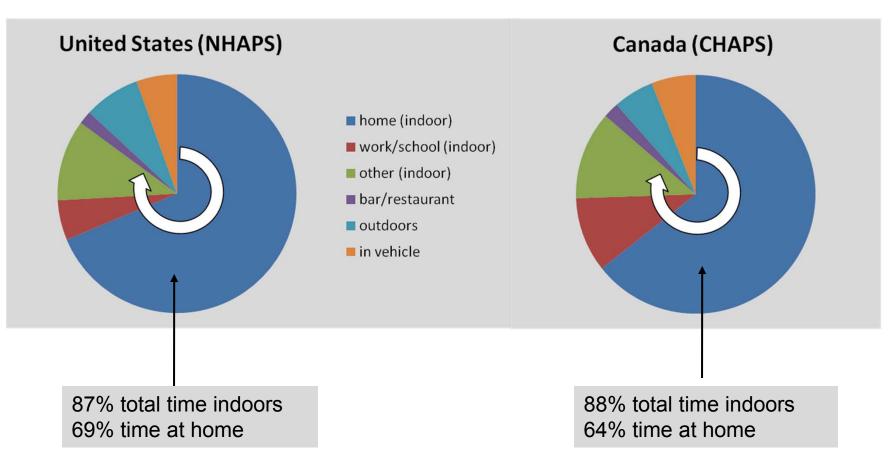
Md. Aynul Bari, Dr.-Ing. School of Public Health, University of Alberta Edmonton, AB

Levels of air pollution exposure measurement

III

Π

IV


Ι

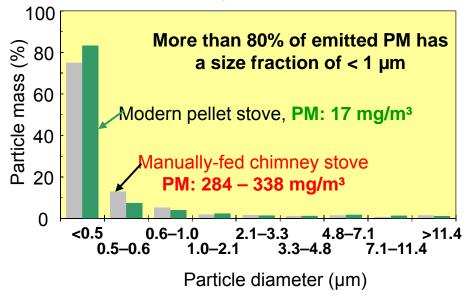
Background

Indoor air quality is an important determinant of health.

- Several studies have been conducted across Canada (e.g., Quebec City, Windsor, Regina, Halifax etc.) in order to compare baseline data and upgrade Health Canada's Indoor Air Quality Guidelines.
- Most epidemiological studies assume outdoor air as a risk factor and are not free from bias because they ignore exposure from indoor air quality.

Indoor Environment and Time-Activity – Mean Amounts of Time Spent in Various Microenvironments for North American Adults

Leech et al. 2002. J. Exp. Anal. Environ. Epidemiol., 12, 427-432


Emission sources of sub-micron particles

Vehicle emissions

Biomass burning (wood stoves/fireplaces)

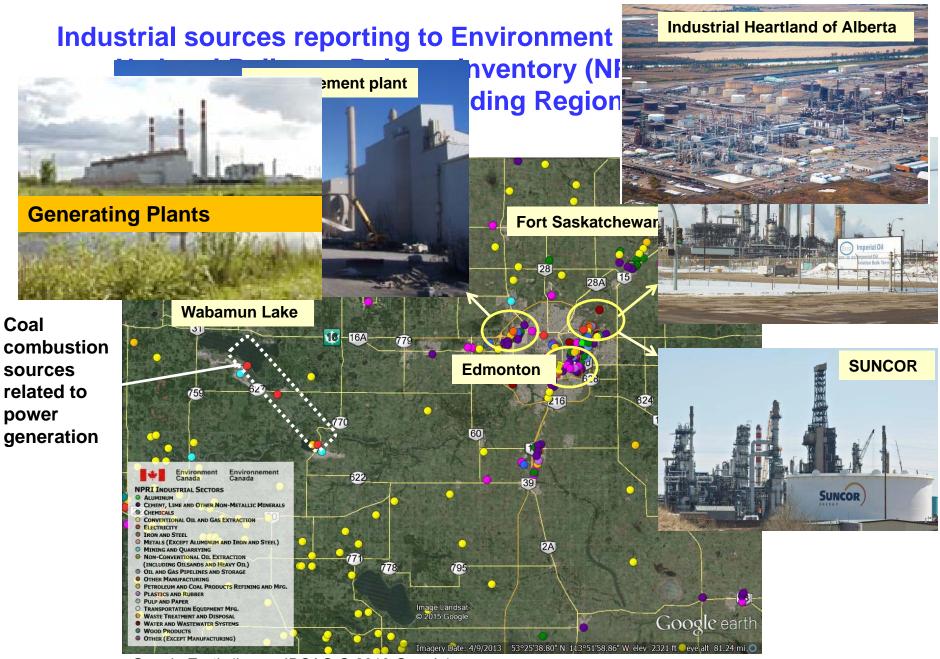
Bari et al., 2011. Atmospheric Environment 45, 7627-7634

Objective

> Characterize indoor and outdoor levels and sources of sub-micron particles (PM_1) at Edmonton homes.

pubs.acs.org/est

Indoor and Outdoor Levels and Sources of Submicron Particles (PM₁) at Homes in Edmonton, Canada

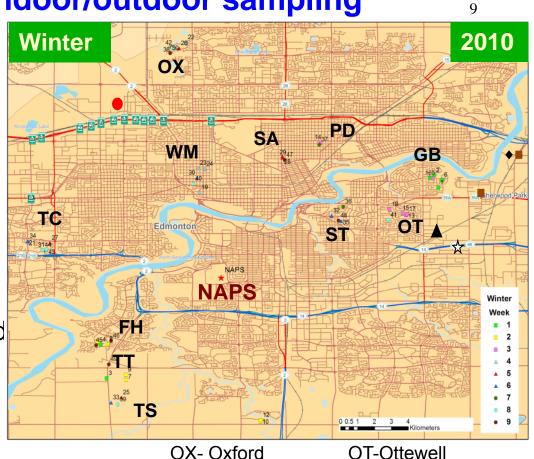

Md. Aynul Bari,*^{,†} Warren B. Kindzierski,[†] Lance A. Wallace,[‡] Amanda J. Wheeler,[§] Morgan MacNeill,[§] and Marie-Ève Héroux^{§,||}

[†]School of Public Health, University of Alberta, 3-57 South Academic Building, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada

[‡]Consultant, 428 Woodley Way, Santa Rosa, California 95409, United States

⁸Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K9, Canada

ACS Publications © 2015 American Chemical Society


Google Earth (Image IBCAO © 2013 Google)

National Pollutant Release Inventory, 2015 (http://www.ec.gc.ca/inrp-npri/)

Methodology: Indoor/outdoor sampling

- ➤ Winter: Jan–Apr (n =50)
- > Summer: Jul Aug (n = 50)
- 74 non-smoking homes
- Nine consecutive 7-day sampling period per season (5-6 homes per period).
- Homes sampled were stratified by age – residences grouped into five construction year strata.
 - ≤ 1946 1946 - 1960 1961 – 1980 1981 - 2000≥ 2001

NAPS: National Air Pollution Surveillance

- WM-Westmount
- SA-Spruce Avenue
- PD-Parkdale
- **TC-Thorncliff**
- **GB-Gold Bar**

- ST-Strathearn
- **FH-Falconer Heights**
 - **TT-Terwillegar** Towne
 - **TS-Terwillegar South**

Methodology – Questionnaires

Baseline Questionnaire data:

- Year of construction.
- Heating and cooking systems.
- Attached or detached garage.
- Supplemental heating-wood stoves/fireplace.
- Carpets in bed rooms and living rooms.
- Nearby outdoor sources.

Daily Diary Questionnaire data:

- Environmental Tobacco Smoke (ETS); burning of candles, incense.
- Window opening and air conditioner use
- Any cleaning activities e.g., vacuuming, dusting, sweeping.
- Car idling in the garage.
- Cooking (type, duration) and use of exhaust fan.
- Barbeque use.
- Use of stoves to fry, grill, burn foods.

10

Methodology – PM₁ sampling and analysis

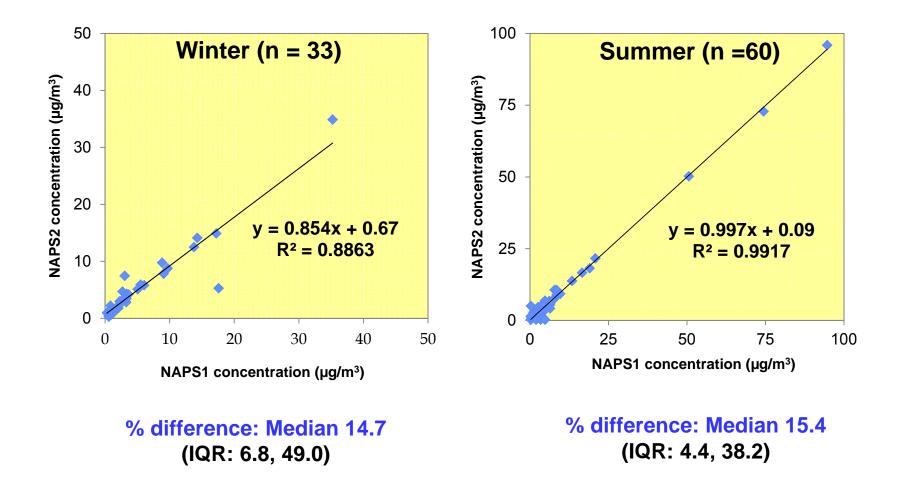
Indoor/outdoor sampling

 Seven consecutive 24 h PM sampling (PM₁, PM_{1-2.5}, M_{10-2.5}) using Harvard coarse mode impactor (HCI)

Harvard coarse impactor

Chemical analysis

- > 34 heavy and trace metals
- Energy dispersive X-ray fluorescence (ED-XRF)
- Inductively coupled plasma mass spectrometry (ICP-MS)

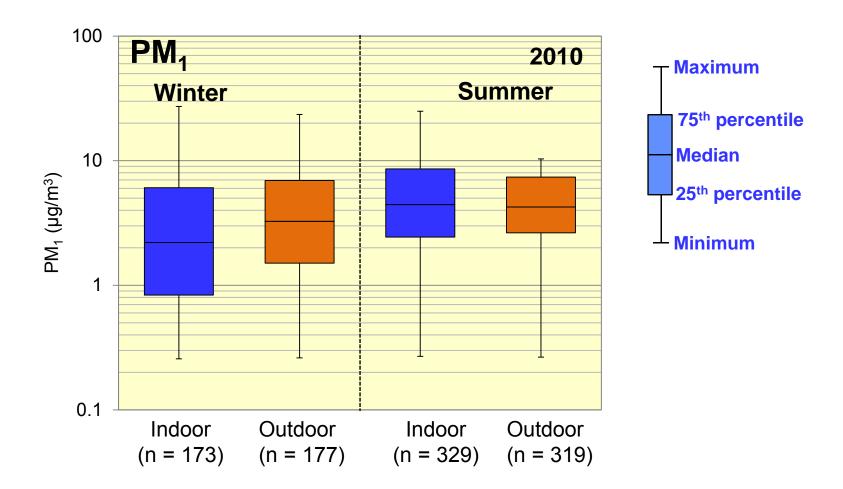

Results: Data quality

- No blank correction (>50% of blanks are below detection limit (BDL).
- First four 7-day sampling periods in winter were invalid and excluded.

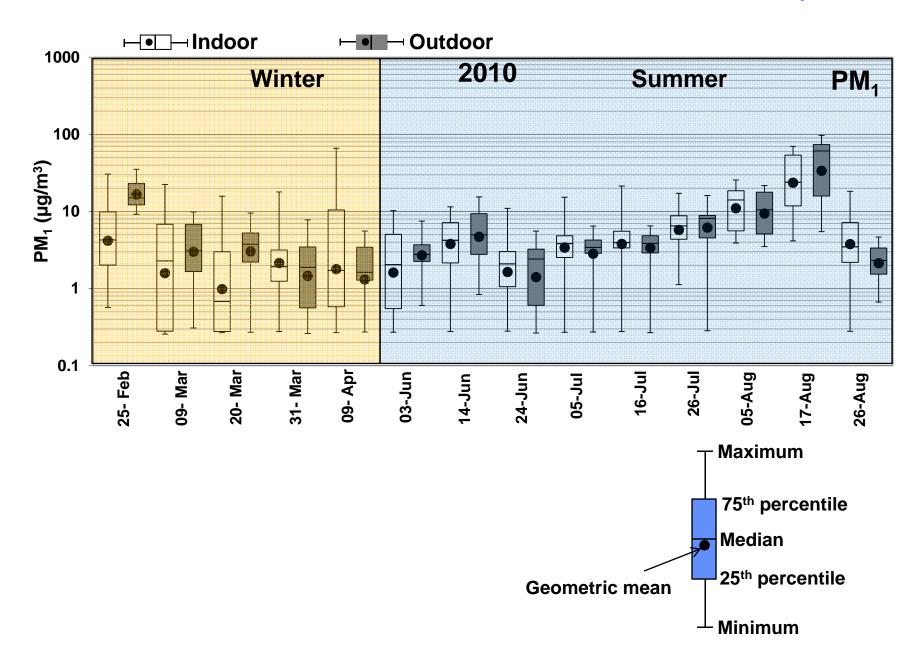
	V	Vinter	Summer			
N = 27	Indoor	Outdoor	Indoor	Outdoor		
	BDL (%)	BDL (%)	BDL (%)	BDL (%)		
PM₁	8	4	20	10		
Silver (Ag)	0	12	5	24		
Aluminum (Al)	19	17	13	11		
Arsenic (As)	3	1	0	0		
Boron (B)	27	19	0	0		
Barium (Ba)	11	7	14	8		
Bismuth (Bi)	17	8	27	27		
Calcium (Ca)	5	4	19	27		
Cadmium (Cd)	39	34	19	12		
Chlorine (Cl)	36	26	29	18		
Cobalt (Co)	19	11	41	40		
Chromium (Cr)	47	66	41	47		
Copper (Cu)	40	50	18	19		
Iron (Fe)	0	0	6	4		
Potassium (K)	7	1	7	4		
Magnesium (Mg)	2	1	22	24		
Manganese (Mn)	0	0	0	0		
Molybdenum (Mo)	19	7	5	3		
Sodium (Na)	12	17	46	50		
Nickel (Ni)	60	70	48	46		
Lead (Pb)	24	4	14	8		
Sulfur (S)	0	0	0	0		
Antimony (Sb)	1	1	0	0		
Silicon (Si)	9	2	14	29		
Tin (Sn)	22	61	2	58		
Thallium (TI)	23	6	24	16		
Vanadium (V)	7	1	3	1		
Zinc (Zn)	7	2	16	8		

Results – Data quality (precision)

• Duplicate sampling (~10% of total sampling) at NAPS station.

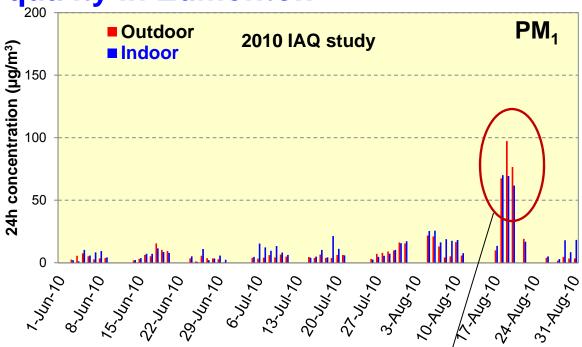


Home characteristics


Characteristics	Winter (n = 26)	Summer (n = 50)
Attached home	3 (12%)	3 (6%)
Attached garage with connecting door to home	8 (32%)	17 (34%)
Detached garage	17 (65%)	32 (64%)
Air conditioning operation	-	13 (26%)
Carpet in home	25 (100%)	46 (98%)
Windows open at least one day during monitoring	23 (88%)	50 (100%)
Visitor smoking at home at least one day during monitoring	3 (12%)	1 (2%)
Visitor smoking outside home at least one day during monitoring	8 (32%)	9 (18%)
Barbeque use		31 (62%)
Anyone left cars idling at least one day during monitoring	6 (24%)	9 (18%)
Electric cooking stove use	22 (88%)	41 (42%)
Anyone used stove to sauté, fry or grill	23 (88%)	45 (90%)
Anyone burned food at least one day during monitoring	7 (27%)	14 (28%)

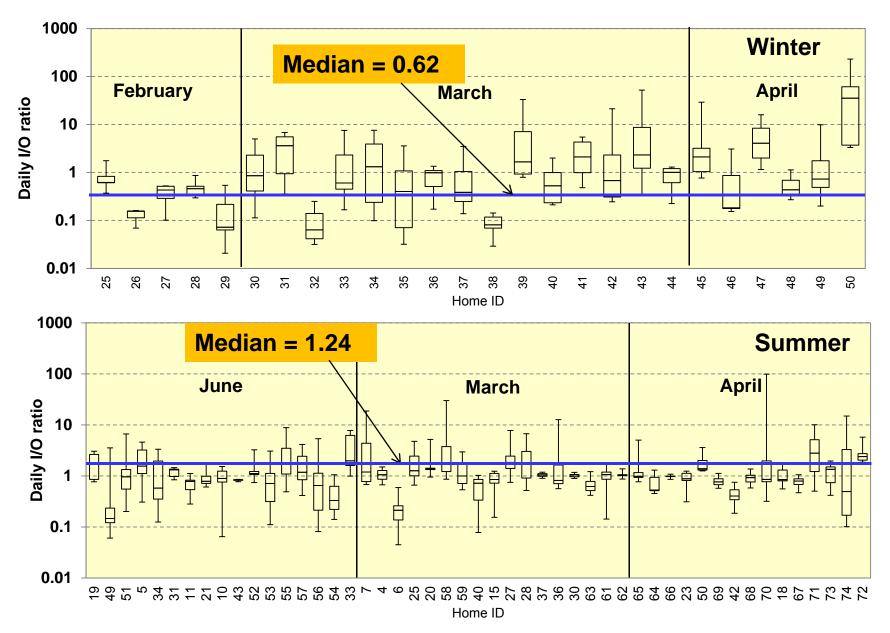
Characterization of PM₁

Results – PM₁ levels-Box Plot


Temporal profiles of indoor and outdoor PM₁

17

Influence of wildfires smoke on indoor and outdoor air quality in Edmonton

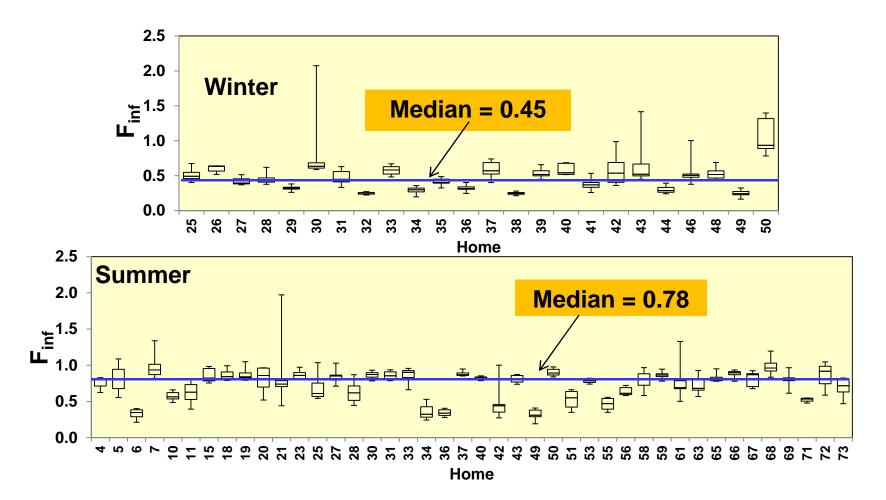


Edmonton, August 19, 2010, 2:16 pm

Variability in indoor/outdoor (I/O) ratios by home

19

Influence of particle infiltration


20

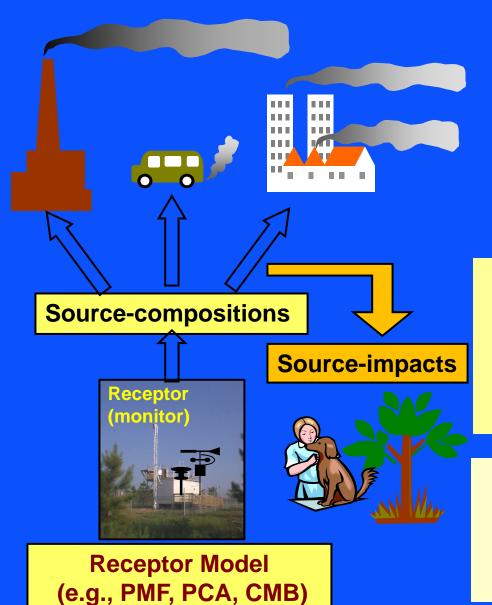
Infiltration factor,
$$F_{inf}$$

 $F_{inf} = \frac{Pa}{a+k}$

P = particle penetration coefficient
a = air exchange rate (per hour)
k = particle loss rate (per hour)

Estimates of F_{inf}

Tracer-based method (e.g., using sulfur ratio)



Source apportionment of PM₁ elements

Analytical Approach for PM₁ Source Identification/Verification

Source Identification:	multivariate analysis US EPA positive matrix factorization (PMF)					
Source Verification:	'local' source influence					
	conditional probability function (CPF) plots					
	'regional' source influence					
	air parcel backward trajectories w/NOAA HYSPLIT					
	[potential source contribution function (PSCF) plots]					
	statistical correlation w/measured air pollutants <i>Pearson</i> correlations					

Multivariate analysis: Receptor modeling

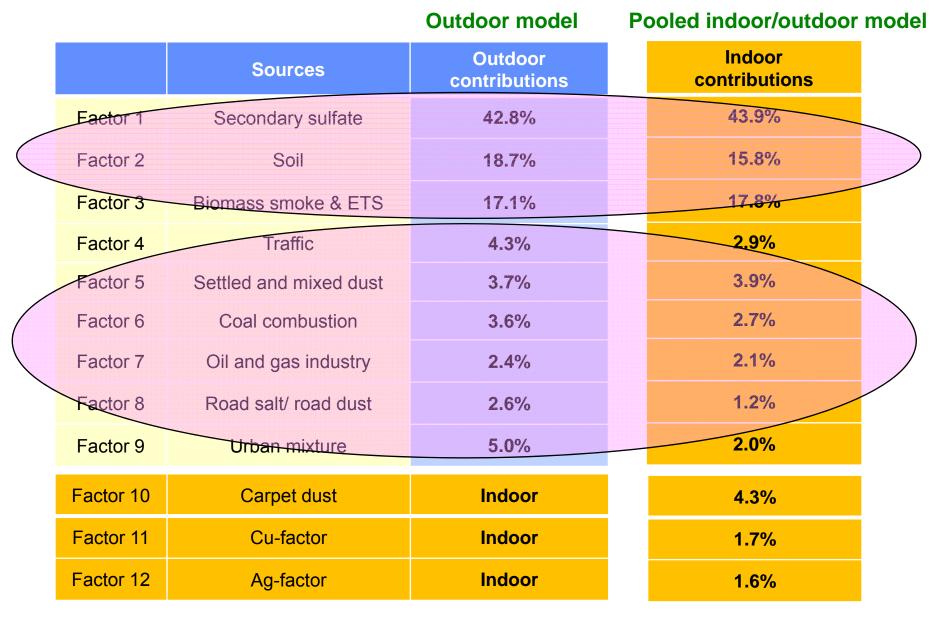
U.S. EPA Positive matrix factorization (EPA PMF3.0).

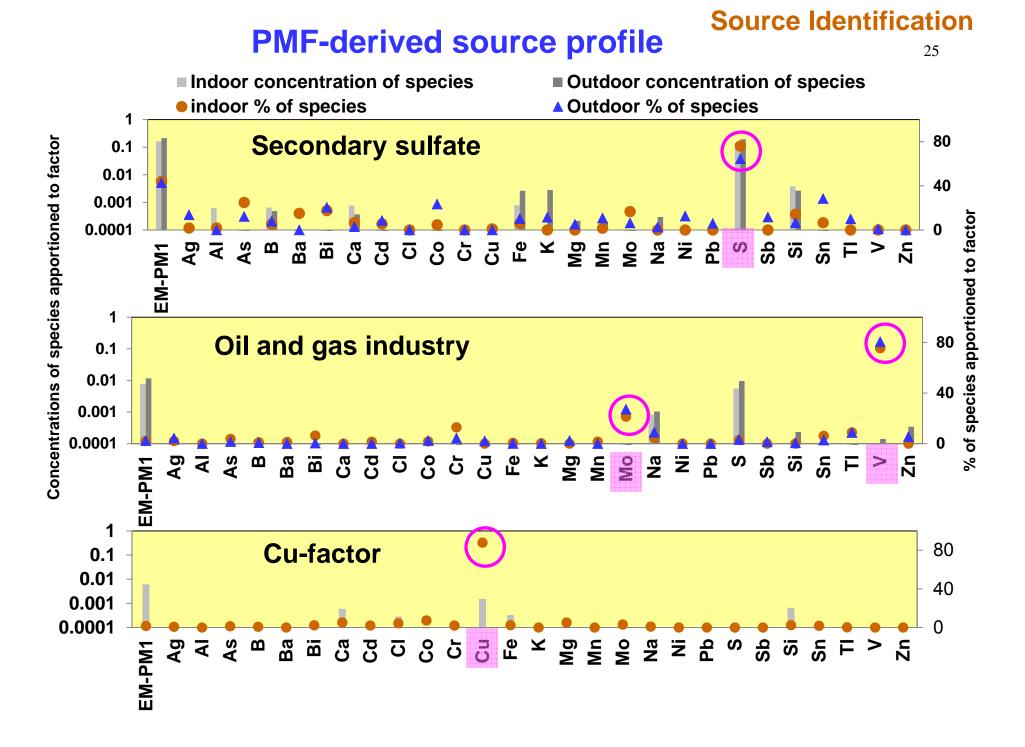
based on analysis on correlation between measured chemical species in a number of samples (n >100).

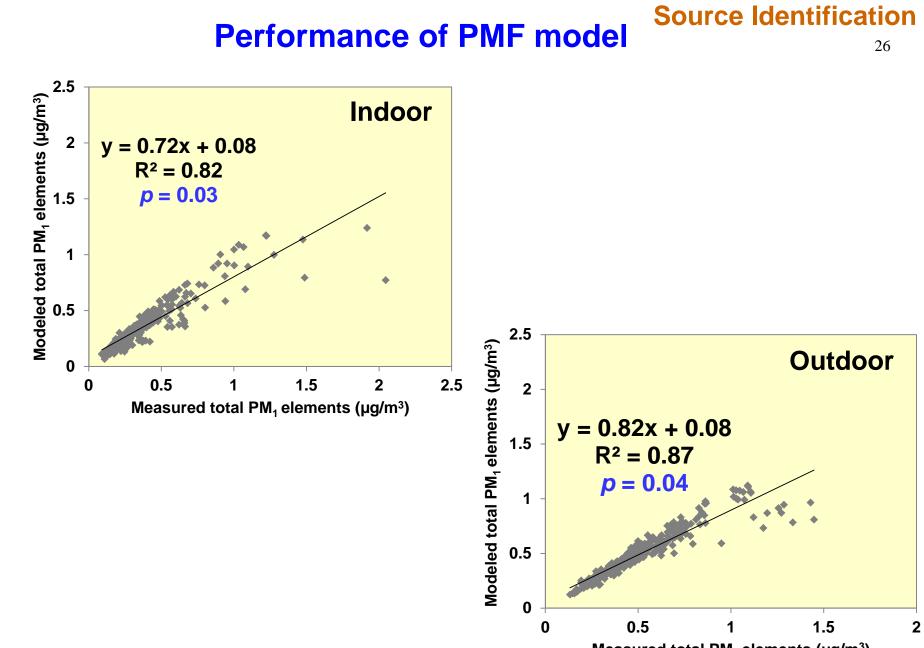
Edmonton IAQ study:

- Indoors (n = 254)
- Outdoors (n = 275)
- Pooled (n = 529)
- No. of elements: 27

PCA: Principal component analysis

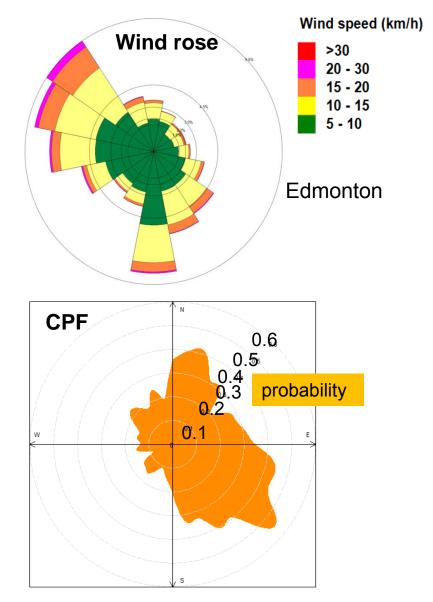

PMF: Positive matrix factorization

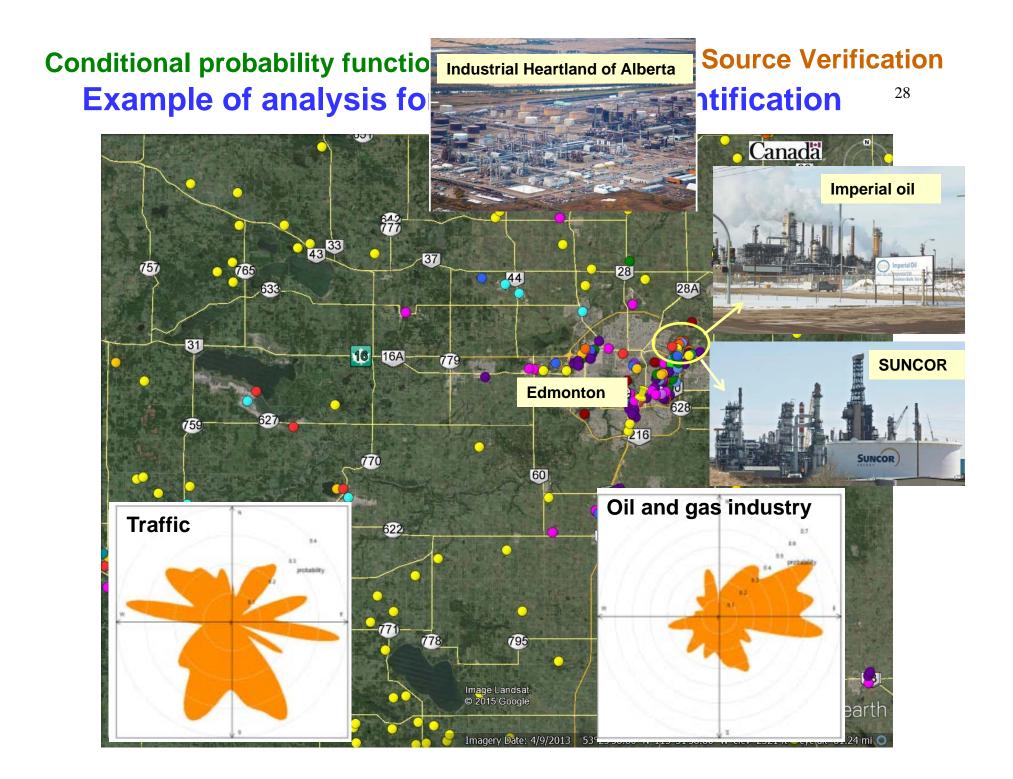

CMB: Chemical mass balance


Source Identification

Source Identification

Sources of elements in PM₁ mass in Edmonton homes ²⁴

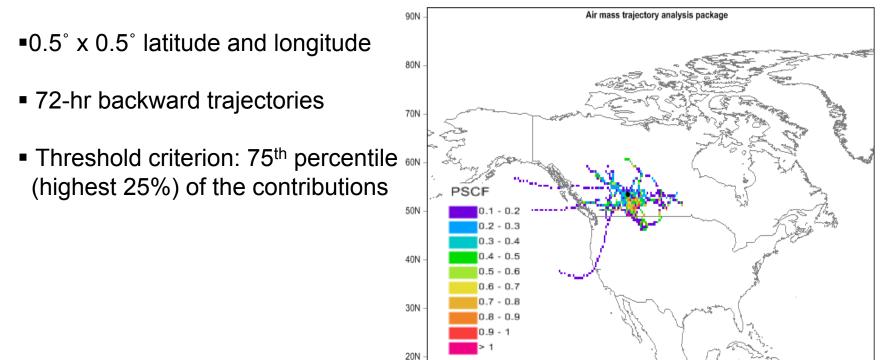



Measured total PM₁ elements (µg/m³)

Source Verification

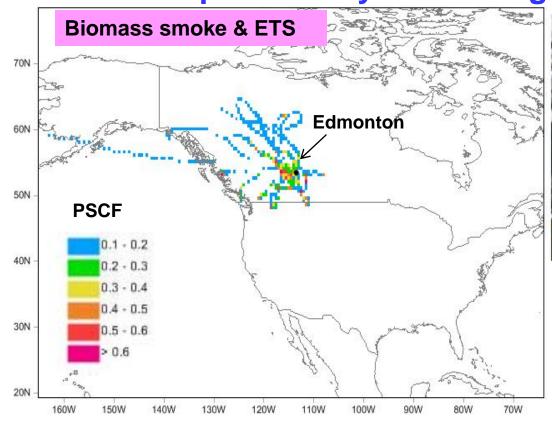
Local source identification: Conditional probability ²⁷ function (CPF)

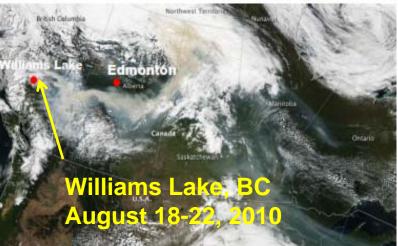
- Uses hourly wind direction data along with daily averaged source contributions to identify the likely sources contributing to a given factor.
- Local sources are likely to be located in the directions that have high conditional probability values.
- Wind directions corresponding to the highest source contributions.
- Threshold criterion: highest 25% (i.e, 75th percentile) of the contributions.


Source Verification

Example of analysis for potential long-range sources 29

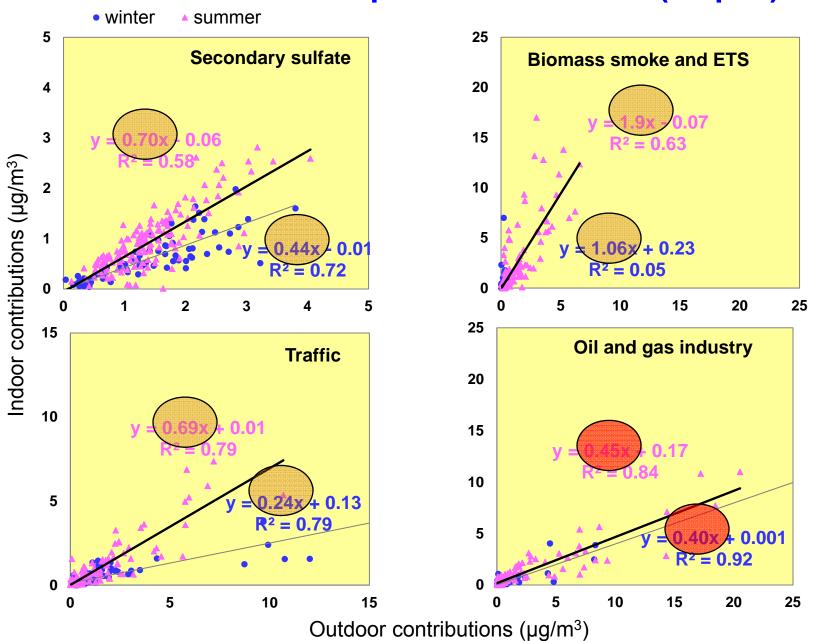
Backward trajectory


National Oceanic and Atmospheric Administration (NOAA) Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) 48 to 96-hr backward trajectories


Potential Source Contribution Function (PSCF)

170W 160W 150W 140W 130W 120W 110W 100W 90W 80W 70W 60W 50W

Backward trajectory Source Verification Example of analysis for long-range sources ³⁰



Source Verification

Correlation (Pearson coefficient) of outdoor sources ³¹ with other pollutants and meteorological parameters

Possible sources	OC	EC	NO ₂	SO ₂	Benzene	Toluene	Acetaldehyde	Temperature
Secondary sulfate	0.06	0.06	0.05	0.03	0.05	-0.08	-0.08	-0.13*
Soil	-0.23*	-0.18**	0.40**	0.08	0.006	-0.01	-0.19**	-0.40**
Biomass smoke & ETS	0.73**	0.71**	-0.26**	-0.26**	0.51**	0.001	0.29**	0.58**
Traffic	0.16*	0.05	0.47**	0.01	0.40**	0.15*	-0.06	-0.11
Settled and mixed dust	-0.08	-0.08	-0.05	-0.06	-0.08	-0.02	-0.03	0.05
Coal combustion	0.001	0.08	0.26**	-0.001	0.28**	0.05	0.07	0.05
Oil and gas industry	-0.01	-0.04	0.04	0.16**	-0.02	-0.02	0.06	0.08
Road salt/road dust	-0.1	-0.10	0.79**	0.08	0.34**	0.08	-0.16**	-0.40**
Urban mixture	0.76**	0.79**	0.28**	-0.18**	0.74**	0.07	-0.09	-0.15*

**Correlation significant at p = 0.01*correlation significant at p = 0.05

Influence of particle infiltration (slopes)

32

Variability in outdoor sources across different neighborhoods (*p*-values, one-way Wilcoxon score)

	Secondary sulfate						Biomass smoke & ETS					
	TS'	WM	SA'	ST	GB'	OX	TS'	WM	SA'	ST	GB'	ΟΧ
ТС	0.53	0.27	0.13	0.93	0.93	0.25	0.07	0.38	0.98	0.29	<0.01	0.14
TS'		0.64	0.06	0.15	0.30	0.12		<0.01	<0.01	0.22	<0.01	<0.01
WM			0.03	0.84	0.15	0.08			0.69	0.07	0.04	0.20
SA'				0.02	0.36	0.70				0.27	0.01	0.03
ST					0.73	0.25					<0.01	0.06
GB'						0.59				_		0.81
	TO			affic		O)/	TO		l and ga		-	0)(
	TS'	WM	SA'	ST	GB'	OX	TS'	WM	SA'	ST	GB'	ΟΧ
тс	0.84		<0.01	<0.01	<0.01	0.99	0.91	0.48	0.56	0.12	0.59	0.40
TS'		0.96	0.02	_<0.01	<0.01	0.70		0.50	0.41	0.23	0.48	0.33
WM			<0.01	<0.01	<0.01	0.35			0.77	0.13	0.21	0.14
SA'				0.34	0.42	<0.01				0.20	0.59	0.85
ST					0.70	<0.01					0.30	0.35
GB'						<0.01						0.61
- Oxfor	d		PD-Pa	rkdale	FF	I-Falcon	er Heig	ghts	Sig	nifica	nt vari	ation.
M-Westmount TC-Thorncliff TT-Terw			-Terwille	egar To	wne	eig			alleri,			
-Spruce	Avenu	le	GB-Go	ld Bar	TS	S-Terwillegar South						
-Ottewe	ell		ST-Stra	athearn								

Summary

- The major sources of PM₁ elements (more than two-third) were made up of secondary sulfate, soil and biomass smoke & ETS.
- Secondary sulfate signal is multi-component.
- Other minor outdoor sources contributed to one-quarter of elemental PM₁ mass. These include: traffic, mixed dust, oil and gas industry, coal combustion, road-salt, and urban mixture.
- Indoor-generated sources of PM₁ elements: carpet dust, Cu-rich, Ag-rich.
- ✤ Larger particle infiltration was observed during summer than winter.

SPECIAL THANKS

University of Alberta Dr. Warren Kindzierski

Alberta Innovates-Technology Transfer (AITF)

Dr. Lance Wallace, Consultant, Santa Rosa, CA, USA

Health Canada

Marie-Ève Héroux Dr. Amanda A. J. Wheeler Morgan MacNeill Keith Van Ryswyk Mélissa St-Jean Tae Maen Shin

Thank You for your kind attention!

Questions?