

Acknowledgements

- Funding for updates and components of the AERflare and ABflare tool:
 - PTAC-Alberta Upstream Petroleum Research Fund (AUPRF)
 - Alberta Energy Regulator
 - Suncor
- AERflare tool (formerly ERCBflare)
 - Developed by M.Zelensky & Zelt PSI
- AERincin tool (formerly ERCBincin)
 - Developed by M.Zelensky & Zelt PSI
- ABflare tool

- Developed by Zelt PSI, M.Zelensky and Exponent

User Guidance Pocs

- AER D060: Upstream Petroleum Industry Flaring, Incinerating, and Venting (release has been delayed)
- AESRD Non-Routine Flaring Management: Modelling Guidance (watch website for final version) (Draft http://environment.gov.ab.ca/info/library/8848.pdf)
- CAPP Sour Non-routine Flaring Framework (available) http://membernet.capp.ca/raw.asp?x=1&dt=PDF&dn=237189
- AERflare tool and User Guide (waiting for approval to post)
- ABflare tool and User Guide (waiting for approval to post)
- Classroom Training ...

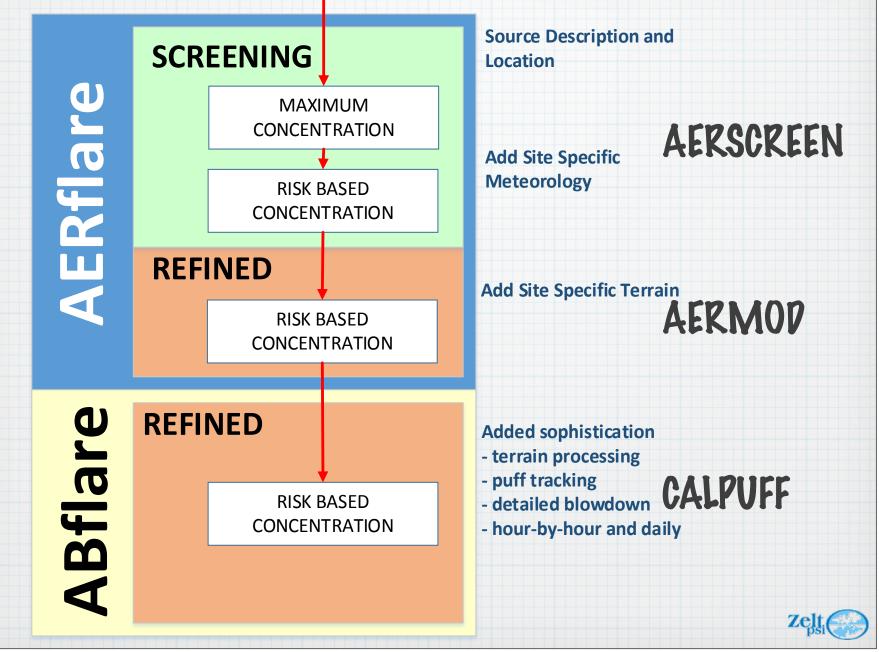
ERCBflare Technical Changes

- Conversion efficiency calculations tweaks
- Hour-by-Hour assessment
- Optional Risk Based Criteria
- Blowdown calculations
- AERSCREEN & AERMOP
- AERSURFACE & AERMET
- Consistency between screening to refined analysis for non-routine and routine flaring assessments

AERflare Screening Tool v2.0 Updated the source model consistent with ABflare and other requested features (lift gas, steam/air assist) AERMOP screening using AERSCREEN methods:

- Matrix like meteorology (i.e., not real nor site specific)
- Land use based upon simplified
 8-catagories for AB then
 increased to BC and SK

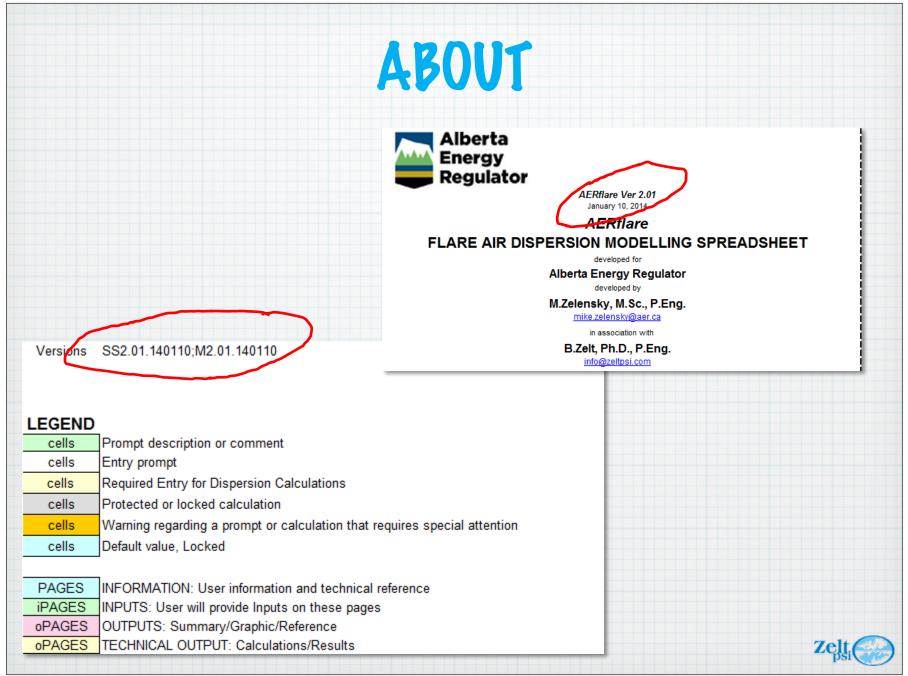
- User required to manually input worst case terrain


AERflare... v2.01

- More automation and less user manual input
- Automated terrain processing
 - For worst case terrain
 - For receptor grid creation for site specific
- Automated land-use processing
 - Creates a site specific meteorological data file
- Refined modelling using full AERMOD setup
- Model routine and non-routine, continuous or blowdown flaring

AERflare... v2.01

- Post-processing of external data
- Batch processing for advanced users
- Advanced switch settings
- Graphics for error checking and assessment
- P060 check list for approval requirements
- Matrix style summary for monitoring planning


AERSCREEN Modelling

- AERSCREEN replaces SCREEN3 for AERflare
 modelling
- Requires meteorology and surface characterization
- AERSCREEN is a specific mode of operation of AERMOD
 - All winds blow in direction of every receptor
 - Meteorology is a μ -meteorological matrix with variation in:
 - Heating; Temperature; u*, w*; Monin-Ubukhov length
 - User selection of Bowen Ratio, surface roughness, temperature range, Albedo
 - AERflare performs lookup of meteorology conditions related to maximums

Important Pages

- 1. iSTART : setup
- 2. iNOTES : keep track
- 3. iFACILITY : where is the flare?
- 4. iFLARING : what is flaring?
- 5. iTERRAIN : modelling domain
- 6. oSUMMARY : results of assessment

iSTART - AERflare Geek Backdoors

Advanced Technical Switches

Description		Variable U		s Inputs		its	Default		Comment		
Re-create run.bat file each time (1-Yes, 0-No)		mrunbat	t		1		1				
Add pause to run.bat file (1-Yes, 0-No)		mpause			0		0				
Run POSTBAT after each batch line (1-Yes, 0-No)		mpostbat			0		0				
Keep input files (1-Yes, 0-No)		mkeep			0		0				
Keep output files (1-Yes, 0-No)		mkeepout			0		0				
AERMOD input files- uses 0,0 origin (1-Yes, 0-No)		mrelloc			0		0				
AERMOD input files-export receptors (1-Yes, 0-No)		mexprec			1		1				
Apply BETA adjustment of u* in AERMET (1-Yes, 0-No)		mmetustar		- 1					SERME	METUSTAR=1 must be used fo T and oMODELLING. It has no	
Use BETA adjustment of low winds method 1 (1-Yes, 0-No) (horizonal meander OFF; SVmin=0.5 m/s)		mlowwind1	(0	0					
Use BETA adjustment of low winds method 2 (1-Yes, 0-No) (horizonal meander ON; SVmin=0.3 m/s; FRAN=max 0.95)		mlowwind2			0		0				
Force SCREEN AERMOD Control Setting (1-Yes, 0-No)		mscreen				0					
Force Site Elevation to DEM elevation (1-Yes, 0-No)		melev			1		1				
DEM always download files (1-Yes, 0-No)		mdemget			0	0					
LCC always download files (1-Yes, 0-No)		micoget			0		0				
Minimum Orifice Diameter is at Exit to Ambient (1-Yes, 0-No)		mmindialoc			0		0				
Synchronize settings between spreadsheets (1-Yes, 0-No)	_	msync			1		1				
Non-Default Settings											
Description		Variable		U	nits	Inp	uts	Defa	ult	Comme	nt
Ambient Temperature		ta			°C	!	5	5			
Average Ambient Wind	Speed	ua		г	nis	3	.5	3.5	j –		
PG Stability	Class	ipg				4	4	4			
Wind Anemometer Reference	Height	zref		m		1	10				
Qmin fraction of	Qmax	qmin/qmax			0.1			25			
SO ₂ 1h Air Quality Ob	jective	obj_so2	µg/m²		j/m²	4	50	450)		
H ₂ S 1h Air Quality Ob	jective	obi_h2s	obi_h2s µ		g/m² 14		4	14			
Receptor Resolution for Maximum Concen	tration	dxmin			m		0	20			
Raw, Fuel and Lift Gas Temperature before Comb	oustion	tginit			°C		5	5			
Minimum value of Sigma-V (0.01 to 1.	0 m/s)	symin	m		nts 0.2		.2	0.2	2		
Minimum wind speed (0.01 to 1.	0 m/s)	wsmin	wsmin				828	0.28	28		
Maximum meander parameter (0.5 (optional for MLOWV		franmax				0.	95	0.9	5		
Receptor hill height grid resolution		hhdx		m		20)		
Modelling domain for receptor grid		rmaxdist	maxdist		m 1				00		
Modelling domain buffer beyond receptor grid		dombuf			m	50	00	500	0		
Minimum number of data point in a period to apply RBC		mndata				78	84	788	4		
Number of virtual sources for HbH modelling		nsources					9	9			
Flag pole receptor	zflag			m)	0				
Radius for AERscreen roughness		rrough			m		00	300			
Radius for AERscreen albedo and bowen ratio		ralbbow			m		00	500	0		
Run Flags (see switch table to	myrun					0	0				
User Period Selection (Annual or I	Month)	mflmon					1	1			
Blowdown Distribution of Mass	Option	mdist					0	2			
Blowdown User Entry of		qmax				bla	ank	blar	ık		
Blowdown User Entry of	Qtotal	qtotal					ank	blar	ık		
							0	0	1		
Flare Tip High Speed Exit Velocity	Check	flagsonicue					U	U			_

 Several backdoor options are made available for recreational use
 Flags for nondefault settings

oSUMMARY - D060 References

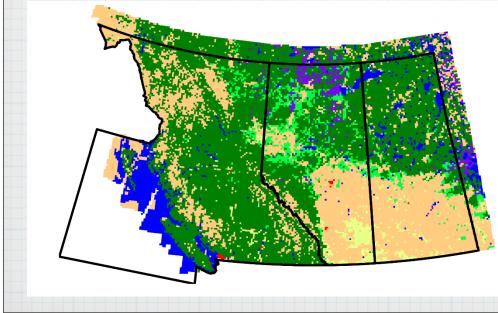
oSummary Page

- Table of PO60 dependencies and limits
- D060 Figure 4 Approval required check
- Updated the modelling output section
- Explicit P060 conditions on flaring or modelling with pass/see requirements

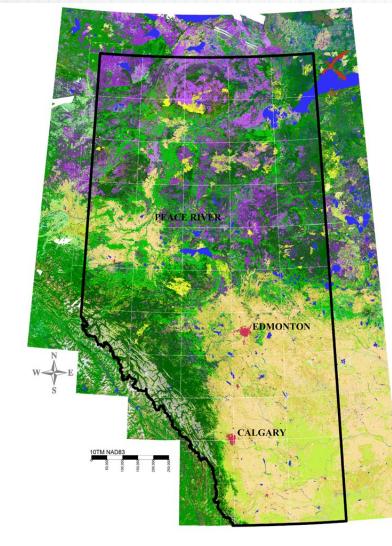
ER D060 Permit Conditions	D060 Ref.	Test	This Application	Allowed	Requirements	
Volume Allowance Threshold Tier for Gas Wells	3.3.1[2]		3		Based upon the Lahee classication See D060-3.3.1[2a] for tier limits	
H ₂ S gas concentration (%)	3.3.1[1]	See Requirements	30.1	5	Permit is required	
Volume per Zone (10 ³ m ³)	3.3.1[2a]	See Requirements	400.00	200	Volume allowance is based upon well before re-classification	
Total Volume (10 ³ m ³)	3.3.1[2d]	PASS	22.5	200	Volume allowance is based upon well before re-classification	
Event Sulphur Emissions (t)	7.12.1	See Requirements	163.280			
Event Duration (min)	7.12.5[1]	See Requirements	4608	15	Modelling is required	
H ₂ S more than 1% (or 10 mol/kmol)	7.12.1	See Requirements	30.1	1	Modelling is required	
Small Volume: low sulphur rate (t/d)	3.3.2[2a]	See Requirements	102.050	1	Modelling is required	
Small Volume: low gas volume over duration (103m3)	3.3.2[2b]	PASS	22.5	50	NO permit is required	
Conditions to Apply for a Blanket Permit: total volume per site (10 ³ m ³)	3.5.3[5a]	PASS	22.5	100	Blanket Permit could be considered	
Conditions to Apply for a Blanket Permit: sulphur emissions per site (t)	3.5.3[5b]	See Requirements	163.3	10	Blanket Permit is NOT allowed	
Conditions to Apply for a Blanket Permit: risk-based criteria met	3.5.3[5c]	NA	NA	NA	Requires refined modelling	
Conditions to Apply for a Blanket Permit: complex terrain issues	3.5.3[5d]	See Requirements	COMPLEX	PARALLEL	Blanket Permit would be considered or with modelling backup	
emporary Flaring Permit Process: 0060 Flowchart (Figure 4)	D060 Ref.	Test	This Application	Allowed	Requirements	
Is Well Classified as Critical ?	3.3.1[1]	Critical Non-Critical				
H2S > 5%	3.3.1[1]	● Yes ○ No	30.10%	5%	Permit is required	
H2S > 1 %	3.3.2[1a]	● Yes O No	30.10%	1%	Air quality evaluation is required (7.12)	
Flared Volume > Volume Allowance (10 ³ m ³)	3.3.1[2]	● Yes ◯ No	22.5	200	Volume exceedance permit is required	
Small Volume Exemption limits exceeded?	3.3.1[2a,2b,2c]	● Yes ○ No				
Is Temporary Flaring Permit Required?	3.3.1	Yes ONo Permit is required and permit to exceed the volume allowance the required			ed the volume allowance threshold is	

INOTES - ** IMPORTANT **

- 1. Describe the flaring event
- 2. Frequency of flaring
- 3. Flaring reduction
- 4. Assumptions
- 5. Space for other notes about what you did to complete the flaring assessment...


ifacility Mapping Projection UTM (NAD83) T UTM Zone 11 11 (120W - 114W ern Hemisperej 🔻 X Coord (m Easting) 481234 or Longitude Surface Coordinates of Flare Y Coord (m Northing) 6112345 or Latitude Flare Base Elevation m 655.8701328 Land-use classification based upon Surface Land-use Characterization Default Coordinates:Grassland Operations to be Conducted DESCRIPTION (cleanup/workover/testing/etc) Single Zone so Total (iFacility Page) must match Total Volume of Raw Gas to be Flared 103m3 22.5 during Clean-up and Testing of ALL Zones (15°C and 101.325 kPa) Subject Zone (iFlaring Page) Reduce Subject Zone Volume or Increase 8 Total Estimated Days with Flaring for ALL Zones days Average Rate to Reduce Duration to 72 hours Is Well tied into Production Facilities? Provide Details on Attachments Page Information on the Feasibility of In-Line Well Testing Provide Details on Attachments Page Attached? ○ Yes ● No Previous Flaring / Incineration Permits(s) for this location in last 12 months? Permit Number(s) Date(s) November 1, 2012 Requested Permit Start Date mm/dd/yyyy (best-case) Requested Permit End Date mm/dd/yyyy (worst-case) December 30, 2012

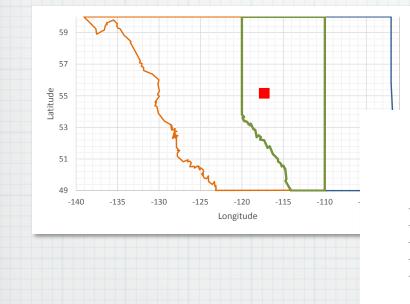
- LOCATION, LOCATION, LOCATION !!!
 - Land-use
 - Describe what/why you are flaring ... add more information on iNOTES ...
 ** IMPORTANT **
 - Date range you plan on flaring for ...
 - Model for specific date
 - Or entire year

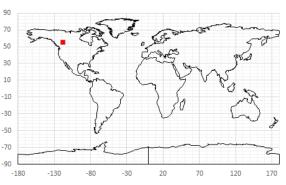

How AERSCREEN is implemented

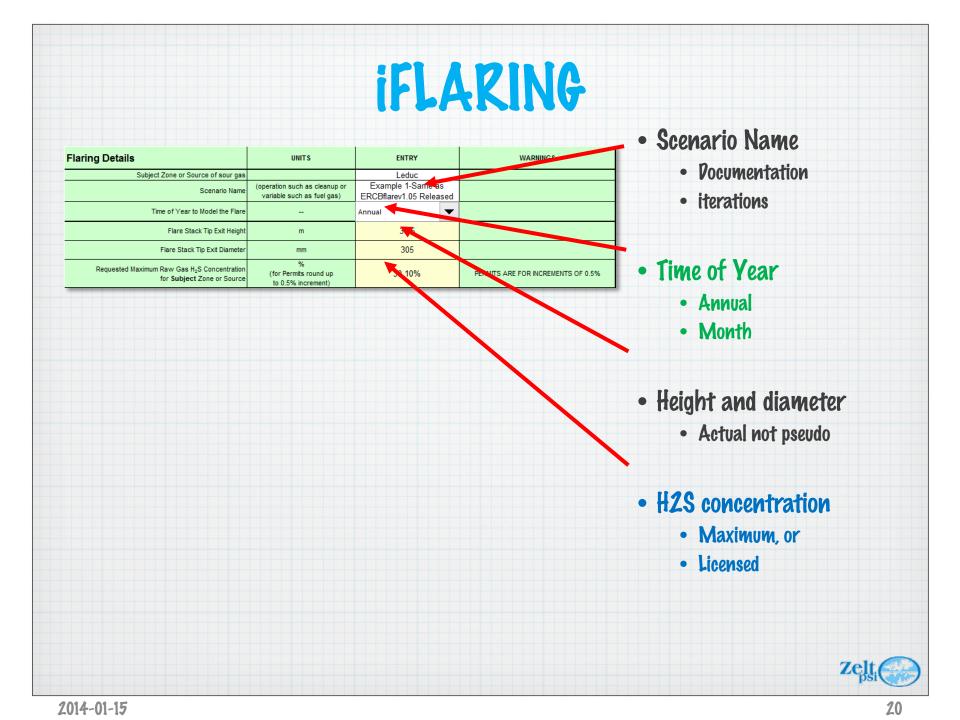
- AERflare uses 8-default meteorology files
 - Deciduous; Coniferous; Swamp; Grassland; Grassland;
 Water; Urban; Desert
 - Landcover is prescribed by flare location and lookup

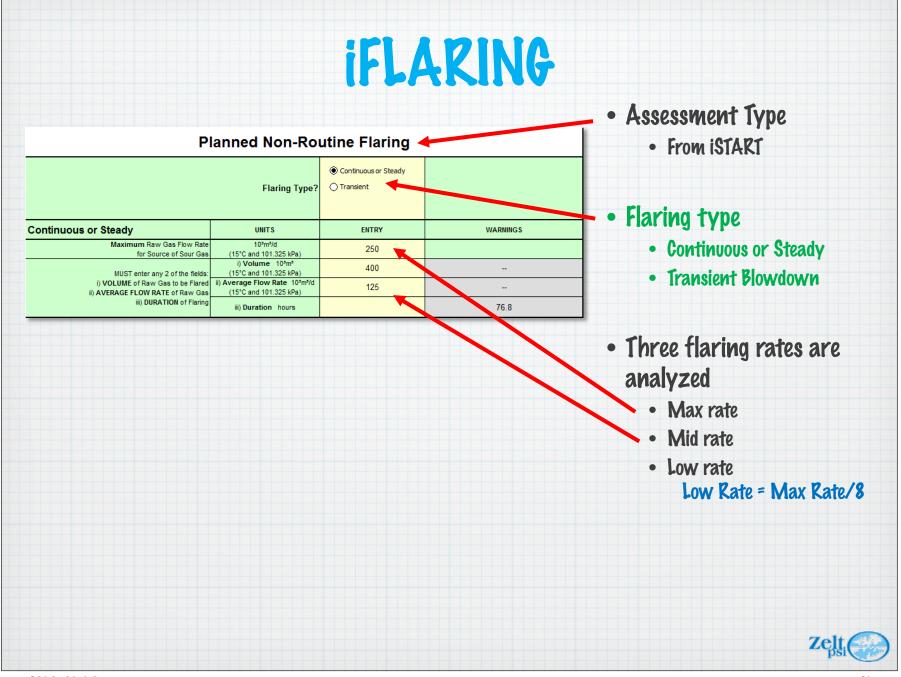
	Description	Alberta Fraction
10	Coniferous Forest	34.8%
20	Deciduous Forest	14.7%
30	Cultivated Land	29.4%
40	Grassland	9.1%
50	Urban	0.5%
60	Swamp	7.9%
70	Water	3.7%
80	Desert Shrubland	0.0%

Refined - Site Specific Meteorology

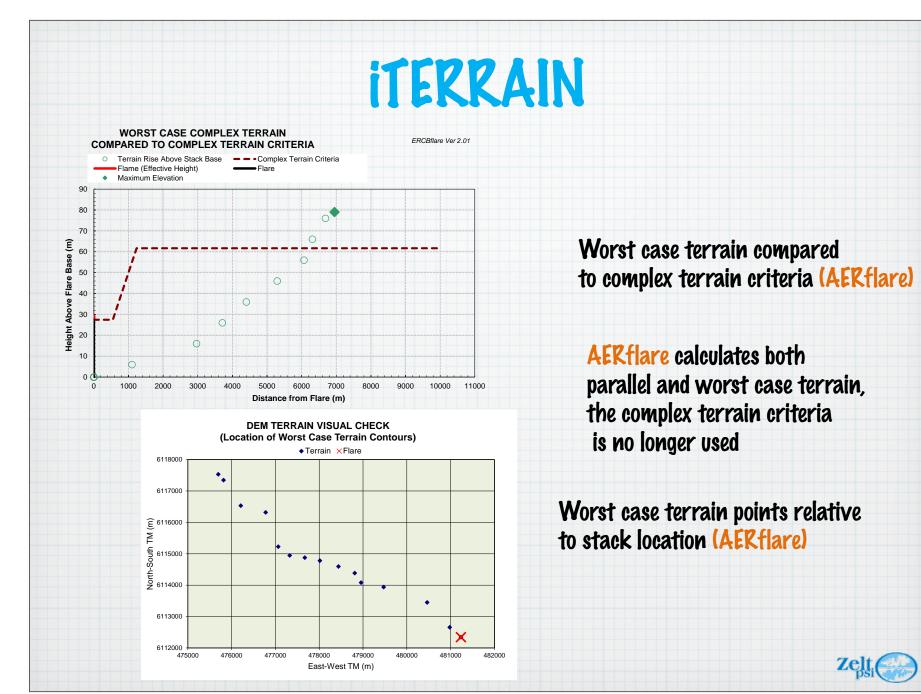



- Land use created from full detailed Canadian land use shape files
- Uses MM5 data extraction
 for AERMET and CALMET
- Processing following AERSURFACE for AERflare
- Processing using CALMET for ABflare

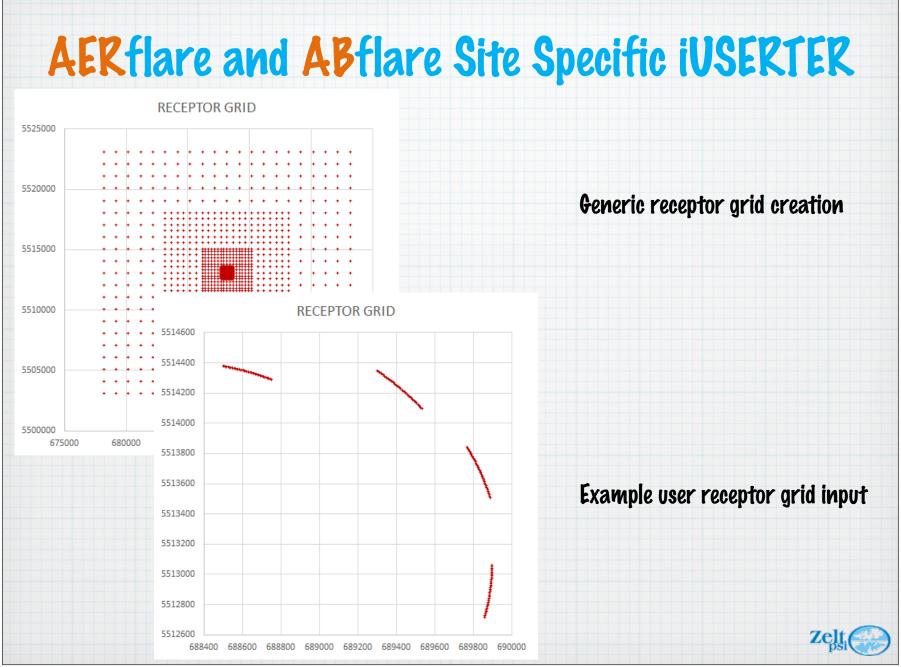


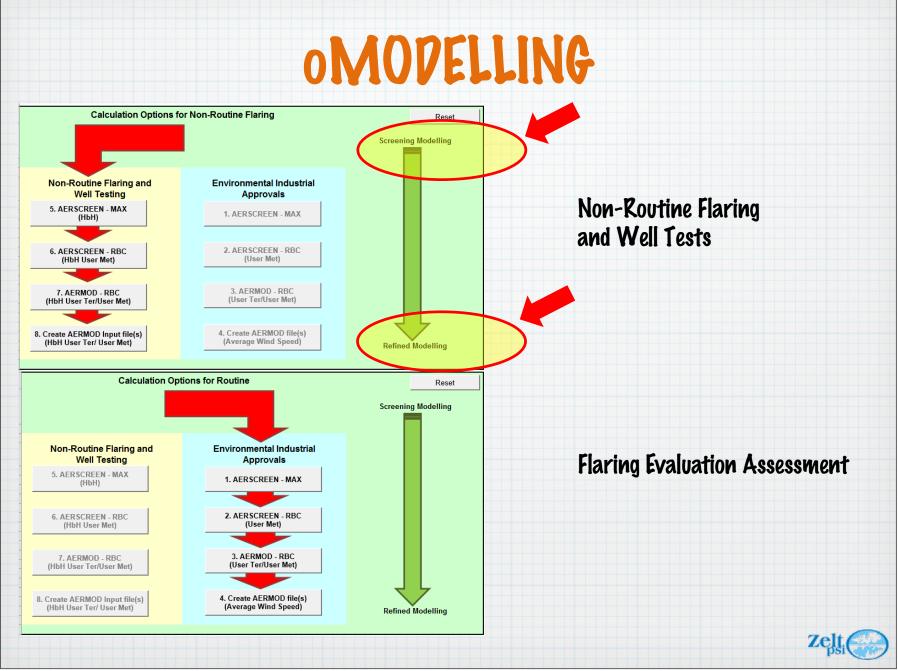

ilocation

- Check if you entered the correct coordinates
- Coordinates will determine the land-use and landuse strongly impacts the air dispersion modelling



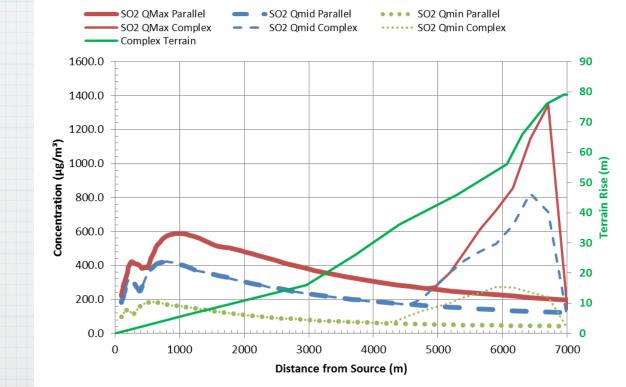
iflaring


- Transient source initial conditions
- Fuel gas
- Lift gas
- Flaring assist
 - Air Assist
 - Steam assist
- Gas composition


oBlowdown

	Transient Source	UNITS	ENTRY			
	Expected Maximum Initial Pressure, PRESS0	kPa (gauge)	4200			
ERflare default	Expected Minimum Initial Gas Temperature, TEMP0	C°	30			
	Expected Minimum Final Pressure, PRESS1	kPa (gauge)	0			
lowdown is three steps	Pipeline/Vessel Inside Diameter, VESSELDIA	m	0.4364			
	Pipeline/Vessel Length, VESSELLEN	m	25100			
	Minimum Orifice Diameter, ORIFICE_DIA	mm	43			
	Discharge Coefficient, DCOEFF		0.6			
	Select the w ay the blow dow n curve is converted from a continuous curve to discrete steps MDIST		 1. Equal Duration 2. Equal Mass 			
TRANSIENT BLOWDOWN MODELI	Raw Gas User Initial maximum flow rate, QMAX	10³㎡/d (15℃ and 101.325 kPa)				
Equal Duration Puffs	Raw Gas User Total volume within vessels/pipes, QTOTAL	10³m³ (15°C and 101.325 kPa)				
Transient Blowdown of 148.0 e ³ m ³ with an Initial Flow I	User selected # of puffs, NPUFFS		3			
700 Exponential Time Constant, TAU= 313.1 min	User selected puff duration, PUFDUR	min				
600 3 puffs of equal mass						
3 puffs of equal mass 500 400 300	The	number of steps i	n blowdown			
300		ot limited in ABflare				
200 3 puffs of 428 min d	Juration 97.9% of mass released in 1284.3 min					
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	840 990 11140 1220 1220 1220		7elt C			

2014-01-15

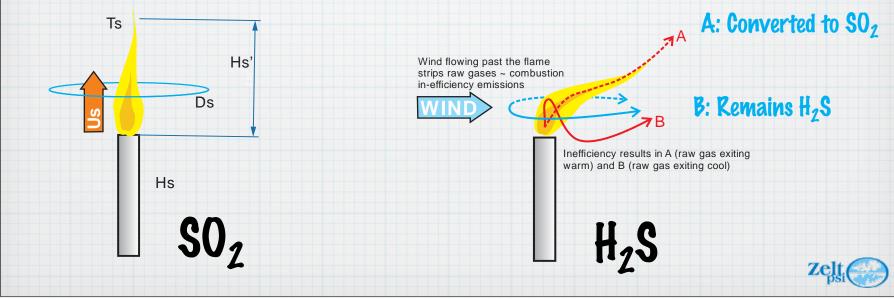


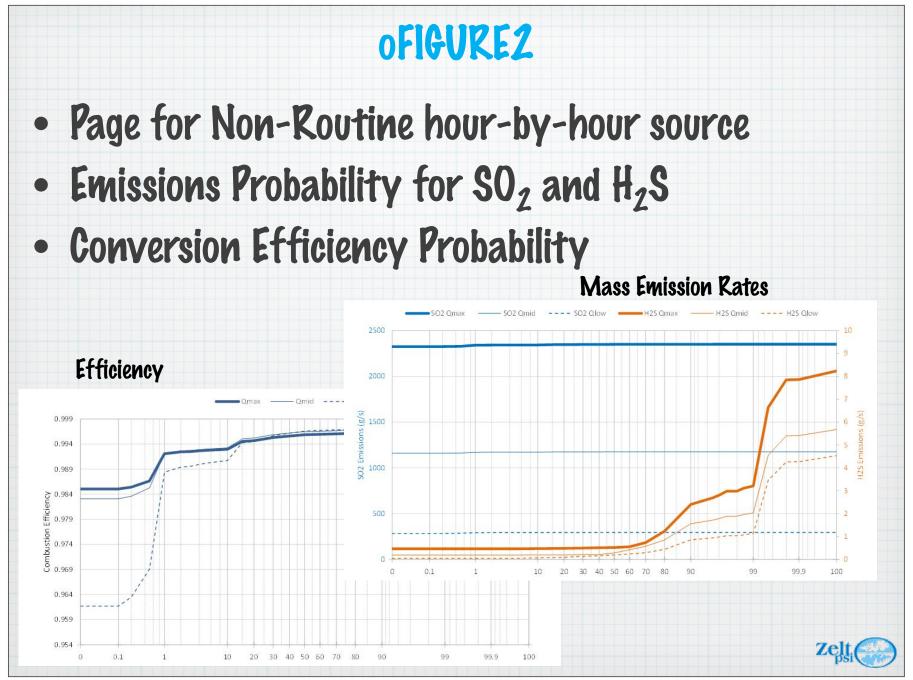
oFIGURE1

oFigure1 shows results for

- 3-rates (Qmax, Qmid, Qmin)
- Parallel terrain & elevated terrain predictions

• Terrain elevations




SO_2 and H_2S

- AERflare and ABflare use a flare conversion efficiency model
- Conversion efficiency is a function of:
 - Heating value
 - Meteorology
- Source parameters are function of efficiency and change hourly with meteorology
- SO₂ emissions are worse case 100% conversion
 - No credit for in-efficiency
- H₂S emissions based upon inefficiency
 - Assumes a fraction of flared gas is stripped away,
 - \therefore H₂S stays as H₂S

SO_2 and H_2S

- SO₂ source parameters based upon heat and momentum energy balance
- H₂S source parameters based upon momentum of stripped gas and assumed temperature

2014-01-15

Questions...

2014-01-15