

AERflare A Dispersion Modelling Tool with AI (Assumptions Included)

Michael J. Zelensky, M.Sc., P.Eng. Brian W. Zelt, Ph.D., P.Eng. Senior Air Quality Advisors, Technical Science Team, AER

Presentation to: CPANS Conference and AGM Edmonton, Alberta March 15, 2023

www.aer.ca

Modelling a Flare as a Stack

- Require pseudo- velocity, diameter and temperature of flare combustion products
- Effective stack height to allow for flame
- Flare-tip, not pseudo-stack downwash

Definition of Pseudo Prefix

- Pseudo-parameters: In mathematics, the 'pseudo' prefix is applied to items that are similar to (or mathematically behave like) something else, but not exactly that.
- Pseudo-science: Consists of approaches that are incompatible with the scientific method

Pseudo-science based Pseudo-parameters

Buoyancy only – 1 equation,
 3 unknowns, specify 2 (T_s, V_s), solve for 1 (D_s)

Stack Buoyancy at Source

$$F_{bs} \equiv Q_s \frac{g}{\pi} \left(\frac{\rho_a - \rho_s}{\rho_a} \right) \approx V_s D_s^2 \frac{g}{4} \left(1 - \frac{T_a}{T_s} \right)$$

Flare Buoyancy in Plume

$$F_{bs} \approx H_C \left(1 - f\right) \frac{g}{\pi \rho_a T_a C_{pa}} = m_f NHV_f^0 \left(1 - f\right) \frac{gR_U}{\pi P_a M_a C_{pa}}$$

Science Based Pseudo-parameters

- - 3 known values that can be calculated with assumptions included
- Dispersion model inputs calculated from rigorously derived Volume, Buoyancy and Momentum equated to simplified equations dispersion models use
- ∑ 3 equations with 3 unknowns, specify none, solve for 3 (T_s , D_s , V_s)

AER 6

Science Based Momentum and Mass

$Nomentum F_{mf} = \frac{1}{4} \frac{M_f T_a}{M_a T_f} V_f^2 D_f^2 = F_{ms} = \frac{1}{4} V_s^2 D_s^2 \frac{T_a}{T_s} V_s^2 D_s^2 = 4F_{ms} \frac{T_a}{T_s}$

▷ Mass/Volume $Q_{sr} = Q_{fr} \left(\frac{molexhaust_s}{molflaregas_f} \right)$

$$Q_{sa} = \frac{\pi}{4} D_s^2 V_s = Q_{sr} \left(\frac{P_r}{P_a} \frac{T_s}{T_r} \right)$$
$$V_s D_s^2 = \frac{4}{\pi} Q_{sr} \left(\frac{P_r}{P_a} \frac{T_s}{T_r} \right)$$

AER 7

Science Based Flaring Pseudo-parameters

$$T_{s} = \frac{\pi}{g} \frac{F_{bp}}{Q_{sr}} \frac{P_{a}}{P_{r}} T_{r} + T_{a}$$
$$V_{s} = \pi \frac{F_{ms}}{Q_{sr}} \frac{T_{r}}{T_{r}} \frac{P_{a}}{T_{r}}$$

$$V_s = \pi \, \overline{Q_{sr}} \, \overline{T_a} \, \overline{P_r}$$

$$D_s = \frac{2}{\pi} \sqrt{\frac{P_r}{P_a} \frac{T_a}{T_r} \frac{Q_{sr}}{F_{ms}} \left(\frac{\pi}{g} F_{bp} + \frac{P_r}{P_a} \frac{T_a}{T_r} Q_{sr}\right)}$$

Flare Effective Stack Height and Downwash Variation with Wind Speed

Constant vs. Hour-by-Hour Modelling

http://uintah.utah.edu/

- EPA approach is to use single set of pseudo-source parameters with downwash
- AER approach is to invoke NOSTD option, and input multiple emission sources with effective stack heights based on V_f / U_a

Example Flare Dispersion Model Input Parameters by Regulator

	Sea level elevation 0 m	Calgary e 1000	levation m
Dispersion Model Input Parameter	EPA / BC	Ontario	AER -constant
Pseudo-Temperature (K)	1273	1273	1164
Pseudo-Velocity (m/s)	20.0	1.5	0.6
Pseudo-Diameter (m)	1.92/1.93	9.04	15.11
Effective Stack Height (m)	39.8	38.3	35.1
Flare Heat Loss (fraction)	0.55	0.30	0.25
Reference Flow Rate (Rm ³ /s)	11.6/11.7	19.4	24.1
Buoyancy Flux (m ⁴ /s ³)	139.0/140.4	231.6	260.8
Momentum Flux (m ⁴ /s ²)	84.8/85.7	10.6	5.1

AERSCREEN Predicted SO₂ for Example Flare by Regulator

AER 12

AERflare Source Model Summary

- Pseudo-source parameters are based on conservation of mass, momentum and energy.
- The flare effective stack height changes with wind speed based on a flare flame model and accounts for flare-tip downwash.
- Implemented in AERMOD with hourly pseudosource and emission parameters.

Suggestions for revised Flare Approach

- Develop FLARE source for AERMOD
 - Remove ambient temperature sensitivity
 - Invoke NOSTD and set effective height based on hour-by-hour wind speed and actual flare tip velocity and diameter
 - Account for flare tip downwash properly
- Reduce flare radiation loss from 55% to a more realistic value
 - Account for flare combustion in-efficiency

Access AERflare

Current regulatory version:
AER.ca > Regulating Development > Rules
and Directives > Directives > Directive 60

Most recent version contact: <u>brian.zelt@aer.ca</u>

Thank you

Protecting what matters

www.aer.ca

in

www.youtube.com/user/ ABEnergyRegulator

www.linkedin.com/company/ alberta-energy-regulator

resource.aer.ca

