Alberta's Air Quality Model Guideline and Meteorological Dataset: Update 2021

CPANS

David Lyder Air Policy October 28, 2021

Alberta's Air Quality Model Guideline and Meteorological Data: Update 2021

Alberta's Air Quality Model Guideline (and response document)

Location:

https://open.alberta.ca/publications/air-quality-model-guideline-2021

Meteorological Dataset

Location:

https://www.alberta.ca/meteorological-data-for-dispersion-models

Contact:

AEP.AirQltyModels@gov.ab.ca

Modelling Approach

Level of refinement

Scenarios

Source types

Baseline

Surface characteristics

Model Output

Sub/super-hourly averaging times

Chemistry:

NO₂/NO_x conversion

TRS

Other chemistry

Acid deposition

Update 2021

Modelling Approach

Level of Refinement

Screening – simple cases/preliminary look at problem/nearby sources

Refined/Advanced – consider terrain/alternate switches

Alternate – specialized/one of

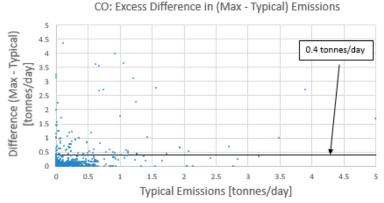
Note: Not tiered

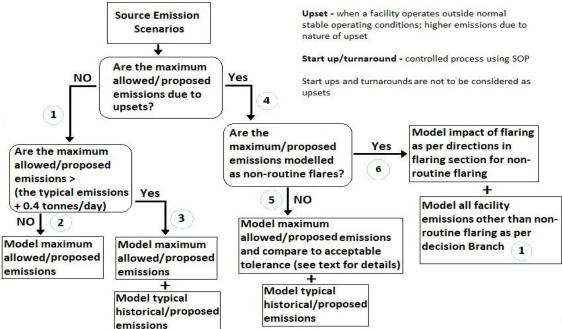
Table 1 Assessment Level and Corresponding Acceptable Air Quality Model(s)

			Restri	ctions	
Air Quality Approved Air Assessment Quality Mode		Switches	Model Domain	Meteorology	Other
Screening	AERSCREEN		≤ 50 km	MAKEMET	Few sources; simple terrain.
AERMOD Refined		Appendix D	≤ 50 km	Regulatory Mesoscale + onsite (if available)	Simple terrain; okay for particle deposition assessment but not acid deposition assessments
	CALPUFF	Appendix D	≤ 200 km	Regulatory Mesoscale + onsite (if available)	Complex and simple terrain
AERMOD Advanced CALPUFF Alternate Other		Written approval of Director before modelling; side by side comparison with Refined model required	≤ 50 km	Regulatory Mesoscale + onsite (if available)	Simple terrain; okay for particle deposition assessment but not acid deposition assessments
		Written approval of Director before modelling; side by side comparison with Refined model required	≤ 200 km	Regulatory Mesoscale + onsite (if available)	Complex and simple terrain
		Written approval of Director and AEP before modelling; side by side comparison with Refined model required		Regulatory Mesoscale + onsite (if available)	Open source; deprecated regulatory models are not allowed

Alberta's Air Quality Model Guideline:

Update 2021


Source Emission
Scenarios
Scenarios
Scenarios
Scenarios


New

- estimated ratesRenewal/Amendment
- historical

Annual averages

annual rates

Modelling Approach

Source Types

De Minimis Sources may be excluded

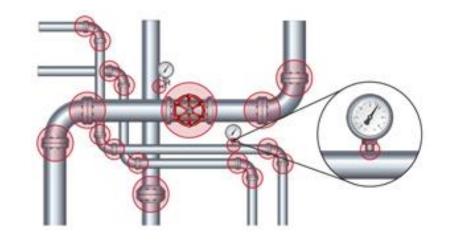
- Identified according to AEIR reporting criteria
 - In total only a few percent of facility total for given substance
- Must consider nearby sensitive receptors

Modelling Approach

Source Types

Merged Stack Sources

- EPA formulation (EPA 1992)
 - Similar stack parameters
 - Merged sources can be used for screening model
 - Must consider nearby sensitive receptors
 - Must consider downwash

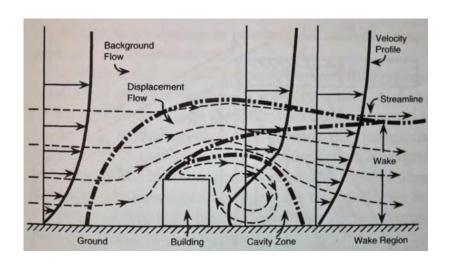


Modelling Approach

Source Types

Fugitive Emissions

- AP42
- CAPP recommended values


Modelling Approach

Source Types

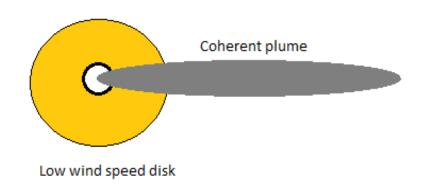
Flaring

- Use AER flaring tools to generate pseudo-parameters for all flare modelling
 - Continuous
 - only pseudo-parameters
 - Non-routine
 - AER risk-based approach

Modelling Approach

Source Types

Building Down Wash


Several formulations allowed

- Prime
- ISCST3 (under certain configurations)

Alternate

- ORD
- Prime2/AWMA

Modelling Approach

Source Types

Low-wind Options (AERMOD)

- Use EPA default option at moment
- If EPA sets new parameterization then use these

Alberta's Air Quality Model Guideline: Update 2021 Example: Create the appropriate input to model TSP and PM2.5 from a pulp and paper son

Modelling Approach
Source Types

Particulate Emission (TSP) from stack surveys

- Distribute emissions per bin
- Aerodynamic profiling for correct transportation

Create the appropriate input to model TSP and PM_{2.5} from a pulp and paper source that is emitting 10 g/s of TSP. From the AEIR Standard (Alberta Environment and Parks, 2018) a pulp and paper source has $(PM_{2.5}/TSP) = 0.560$ and $(PM_{10}/TSP) = 0.737$ (recall that PM_{10} is cumulative and includes the $PM_{2.5}$ mass fraction).

AERMOD Solution:

To set up AERMOD it is necessary to first define the mass fraction. For this problem a table of input values for particulate deposition modelling is as follows:

PM	Mean Particle	Mass	Particle Density	Mass (g)
Species	Diameter (µm)	Fraction*	(g/cm ³)	
P1 (PM2.5)	0.625	0.1400	1	1.400
P2 (PM2.5)	0.875	0.1400	1	1.400
P3 (PM2.5)	1.125	0.1400	1	1.400
P4 (PM2.5)	1.875	0.1400	1	1.400
P5 (PM10)	4.250	0.0885	1	0.885
P6 (PM10)	8.000	0.0885	1	0.885
>PM10	20.000	0.2630	1	2.630

^{*} The mass fraction is assumed to be distributed uniformly amongst the different diameter bins associated with a particular PM species.

Modelling Approach

Baselines

Total Particulate Matter (TPM)

- Limited PM₁₀ data
- Profiling using available data
- Not zero

General Guidance

- Clarity about what is in the modelling
- Clarity about what is missing – general guidance on selecting representative baseline

Modelling Approach **Surface Characteristics** Revised Bowen Ratio, Albedo, and Surface Roughness

- 2015 Canadian Land Use
- NLCD equivalent
- Used in developing new meteorology

Appendix E

AEP Recommended Default Surface Characteristics

Table F 1 Surface Roughness Length (m) for Land Use by Season

> Palustrine Aquatic Bed Estuarine Aquatic Bed

Canada 2015:	NLCD 2016 ²	Seasonal Surface Roughness				
Land Use Cover		NLCD Code	Winter	Spring	Summer	Fall
FGP Code ¹						
Water	Open Water	11	0.001	0.001	0.001	0.001
Snow and Ice	Perennial Ice/Snow	12	0.002	0.002	0.002	0.002
	Developed, Open Space	21	0.020	0.030	0.040	0.030
	Developed, Low Intensity	22	0.050	0.090	0.100	0.090
Urban	Developed, Medium Intensity	23	0.200	0.300	0.300	0.300
	Developed, High Intensity	24	0.700	0.700	0.700	0.700
	Barren Land (Rock/Sand/Clay) (Arid Region)	31	NA	0.050	0.050	0.050

0.0		7

•					
	98	0.050	0.050	0.050	0.050
	99	0.050	0.050	0.050	0.050

Default surface values are indicated by the green shaded/bolded entries. Cream shaded boxes indicate interpolated values for this document.

Definition of Seasons:

"Spring" refers to periods when vegetation is emerging or partially green. This is a transitional situation that applies for 1-2 months after the last killing frost in spring.

"Summer" applies to the period when vegetation is lush and healthy, typical of midsummer, but also of other seasons where frost is less common.

Canada LUC 2015

² Table 6-5. Seasonal Values of Bowen Ratio for the NLCD 2001-2018.

There are no arid areas in the province as per the NLCD definition.

Modelling Output

Hourly

May exclude top 8 values (top 0.1%)

Super-Hourly

- Must include all hourly values
 - 8-hour average remove top value
 - 24-hour average and longer no removal allowed

 $C_{\text{sub-hour}} = C_{\text{hour}} \times (\text{sub-hourly time/hour})^{-0.28}$

 $= C_{\text{hour}} \times 1.21$

Sub-Hourly

- Restricted to odour management **AAAQGs**
- 30 minute average period
- Must be based on include all hourly values
 - May exclude top 0.5% (based on Ontario guidance) – exclude top 44 "sub-hourly" values based on hourly data

Model Output

$$\sum_{i=1}^{N} [NO_2]_{predicted\ hourly,i} = [O_3]_{ambient\ hourly} + \sum_{i=1}^{N} ISR_i * [NO_x]_{predicted\ hourly,i}, \tag{4c}$$

which can be further broken down into project and non-project source contributions:

Chemistry

$$\textstyle \sum_{i=1}^{N}[NO_2]_{predicted\ hourly,i} = [O_3]_{ambient\ hourly} + \sum_{i=1}^{n}ISR_i*[NO_x]_{predicted\ hourly\ project\ sources,i} + \sum_{i=1}^{n}ISR_i*[NO_x]_{predicted\ hourly\ project\ sources$$

NO₂/NO_x

$$\sum_{i=N-n}^{N} ISR_{i} * [NO_{x}]_{predicted \ hourly \ non-project \ sources, i}. \tag{4d}$$

- 1. Total Conversion Method (always)
- PVMRM/OLM (AERMOD)/ OLM: use in-stack ratios if available

Default ISR_i = 0.2

Model Output

Chemistry

NO₂/NO_x

- 3. RIVAD/ISORROPIA (CALPUFF): Use Alberta default NH_3 and H_2O_2 values if no better available
- 4. ARM (AERMOD and CALPUFF): Use downwind monitoring ratios

Default value = 0.7

Model Output

Chemistry

NO₂/NO_x

```
5. ARM2 (AERMOD and CALPUFF):
Use current EPA methodology
if NO<sub>2</sub> (project, total) <= 200 ppb use as is
if NO<sub>2</sub> (project, total) > 200 ppb modify based on ISR.
If all project ISR < = 0.2 then use default
If any project ISR > 0.2 then use stack ISRs
```


Model Output

Chemistry

NO₂/NO_x

In Stack Ratios (ISRs):

- 1. Stack testing (AEIR)
- 2. Manufacturer's data
- 3. EPA list of acceptable ISRs
- 4. Default values if no better information available:

```
Project ISRs = 0.2
```

Non-project =
$$0.2$$

Model Output
Other chemistry
TRS

Reported as TRS, use as is

Reported as mix (e.g., H2S, CS2, etc.), then form simple mass sum

Model Output

Other chemistry

SO₂, SO₄, etc. (acid deposition)

- Use CALPUFF or other AEP recommended model (not AERMOD)
- Use RIVAD/ISORROPIA chemistry (CALPUFF)
 - Use Alberta default NH₃ and H₂O₂
 values if no better available

Appendix G AEP Recommended NH₃ and H₂O₂ Levels

For CALPUFF deposition and secondary particulate matter studies, it is important to set representative NH_3 and H_2O_2 levels. If onsite NH_3 and H_2O_2 data is available it <u>must</u> be used, particularly in areas where there are known sources of NH_3 (e.g., agricultural operations), otherwise use the default values.

Table G 1 Recommended Default NH₃ Monthly Levels

NH ₃ [ppb]*											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1.5	1.5	1.5	2.5	2.8	3.2	3.2	3.0	2.5	2.0	1.5	1.5

^{*} Adapted from Warner et al., 2017 assuming Alberta's seasonal variability.

Table G 2 H₂O₂ Hourly Levels by Season

H ₂ O ₂ [ppb]**						
		Urban/Indus	strial		Rural	
Hour	Winter	Summer	Spring/Fall	Winter	Summer	Spring/Fall
0:00	0.30	0.50	0.40	0.54	0.43	0.48
1:00	0.35	0.60	0.48	0.56	0.41	0.49
2:00	0.40	0.70	0.55	0.59	0.39	0.49

or

Model Output

Acid Deposition

When required:

1. The proponent's combined emissions of SO_2 , NO_x , and NH_3 are greater than 0.175 t/d of H⁺ equivalent, i.e.,

```
Total H<sup>+</sup> equivalent (t/d) = 2*(SO_2 t/d)/(64)+1*(NO_x t/d)/(46)+1*(NH_3 t/d)/(17), (5)
```

- 2. There is evidence that regional soil and surface water is more sensitive to acidification than is estimated in the provincial framework, or
- 3. There is existing deposition and/or acidification impact monitoring that indicates a potential concern if acid deposition increases.

Model Output

Acid Deposition

- Use Acid Deposition Management Framework (ADMF) to determine if critical load is exceeded
- Base Cation Deposition: Incorporated into ADMF already add additional deposition in areas of heavy crustal disturbance
- Meteorology: Use median average deposition value based on five year regulatory data set
- Emissions: Annual average

Meteorology: Update 2021.

Current Meteorology

2002 - 2006 MM5

12 km resolution

30 layers

Complete province

Convenient extraction tool (MMEU)

500 GB

Why new meteorology?

MM5 is dated – no longer supported

Weather Research Model (WRF) has improved physics – state-of-science mesoscale weather model

More ground data available to develop model

Alberta's Meteorology: Update 2021 MULTI-MOI

New Meteorology

MULTI-MODEL EXTRACTION UTILITY VERSION 2 (MMEU2)

SERVICE ALBERTA ON BEHALF OF ALBERTA ENVIRONMENT AND PARKS

WEATHER RESEARCH AND FORECAST MODEL (WRF) RWDI # 2004851 September 24, 2021

SUBMITTED TO

David Lyder
Senior Air Modelling Standards Engineer
Air Policy Section
Environment and Parks
Main Flr., Oxbridge Place
9820 – 106 Street
Edmonton, AB T5K 2J6
david.lyder@qov.ab.ca

SUBMITTED BY

Jeff Lundgren, M.Sc. Technical Director / Principal Jeff.Lundgren@rwdi.com

Rodney Blanco Project Manager Rodney.Blanco@rwdi.com

RWDI AIR Inc.
Consulting Engineers & Scientists
Suite 1000, 736 8th Avenue SW
Calgary Alberta Canada T2P 1H4

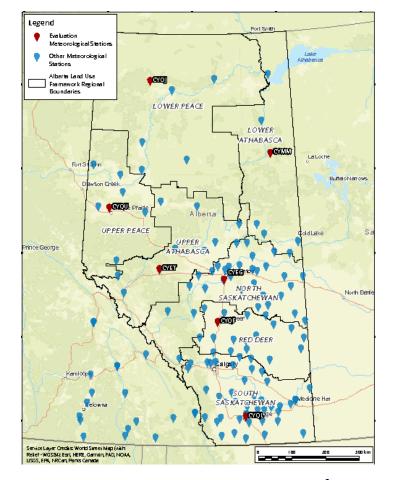
T: 403.232.6771 F: 403.232.6762

New Meteorology

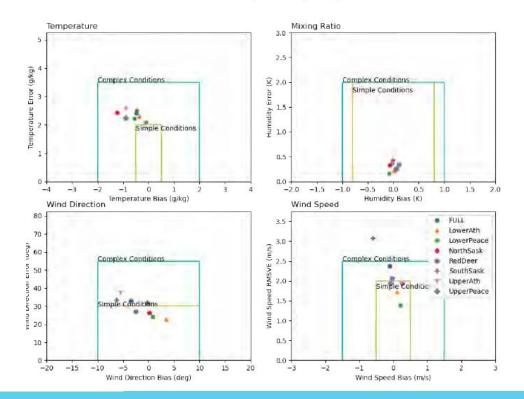
- WRF V4.2.1, WPS 4.2
- 0.25° ERA5 outer nest
- 12 km/4km inner nests
- 39 layers up to 100 mb

New Meteorology

- Physics built on previous CMAQ studies (AEP 2018)
- Improved boundary conditions
- Increased ground data for observational nudging (300+ stations)

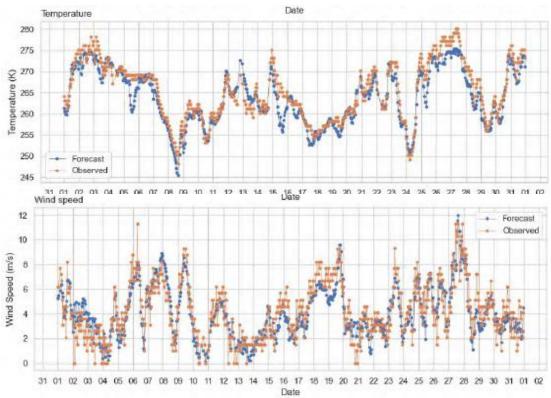

Table 2: **MMEU2 WRF Configuration**

WRF Process	MEUE2 WRF Configuration
Model Version	WRF 4.2.1, WPS 4.2*
Grid Nesting	12/km run together with 1-way feedback*
Longwave Radiation	RRTMG
Shortwave Radiation	RRTMG
Land Surface Model (LSM)	Noah
Planetary Boundary Layer (PBL) scheme	MYJ
Explicit Moisture Scheme	WSM6
Cumulus Parametrization Scheme	Grell-Freitas on 12/4km
Analysis Nudging	Nudging applied to winds, temperature and moisture every 3 hours, 12km only*
Analysis Nudging Wind Coefficient	3x10-4
Analysis Nudging Temp Coefficient	3x10-4
Analysis Nudging Moisture Coefficient	3x10-4
IC/BC + Analysis nudging dataset	ERA5*
Observation Nudging	Nudging applied to both surface wind and temperature for 4 km domains only
Observation Nudging Dataset	MADIS plus ACIS*
Observation Nudging Wind Coefficient	3x10-4
Observation Nudging Temp Coefficient	1x10-4
Observation Nudging Moisture Coefficient	None


Model Validation

- One MADIS station held back per land use region
- Performance based on bias, absolute error and/or RMSE: 2-m temperature, wind speed/direction, vapor mixing ratio
- January, April, July, October for all years

WRF Performance by LUF Area January 2019


Model Validation

- Soccer plot graphical assessment of error and bias
- For the most part model performs well and meets simple and complex terrain performance criteria

Model Validation

 Time series also indicated very good model performance

MMEU2

- Very similar to previous MMEU
- User manual will be available

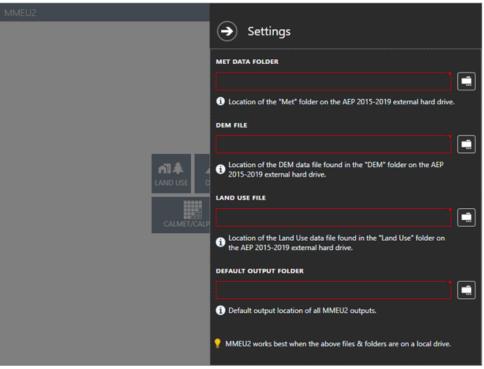
MULTI-MODEL EXTRACTION
UTILITY 2 (MMEU2) &
2015-2019 ALBERTA
METEOROLOGICAL

DATA SET USER'S GUIDE

MMEU2

Using the tool

Disclaimer



MMEU2

Using the tool

- Pathway
 - Met data
 - DEM
 - Land Use data
 - Output

The directories specified in the Settings dialog can be modified at any time by selecting the Settings Gear located in the upper right-hand corner of the application.

MMEU2

Using the tool

- Land Use data
- Default native resolution (30 m); can use coarser resolution

The spatial extent screen is used to specify the extents of the region.

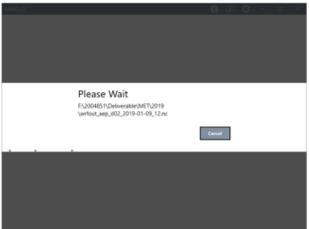
MMEU2

Using the tool

- DEM data
- Default native resolution (25 m)
- Can use coarser resolution: different interpolation schemes

The spatial extent screen is used to specify the extents of the region.





MMEU2

Using the tool

- AERMET ready
- SAMSON, RAOBS, Stage 1, 2 and 3
- Still have to do visualization check of upstream land use zones (not AERMAP)

MMEU2

Using the tool

- GEO.DAT
- CALMET/CALPUFF ready (.INP files)



MMEU2

Using the tool

- Other
 - WRF
 - MCIP

Cost

Comparable to cost of current MM5 data (~\$500)

- confirmed at purchase

Large data set (10 TB)

- be prepared to receive it

Alberta's Air Quality Model Guideline and Meteorology: Update 2021

Questions?

