PROVINCE-WIDE PHOTOCHEMICAL MODELLING OF AMBIENT AIR QUALITY WITH CMAQ

CPANS Calgary January Luncheon

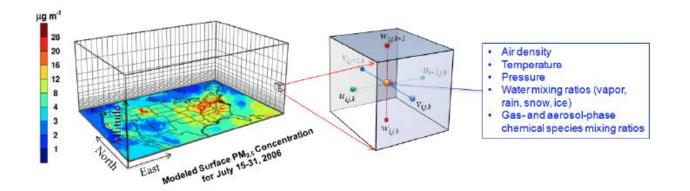
Maxwell Mazur M.Sc.

Senior Air Quality Specialist Operations Division; Red Deer North Saskatchewan Region Alberta Environment and parks

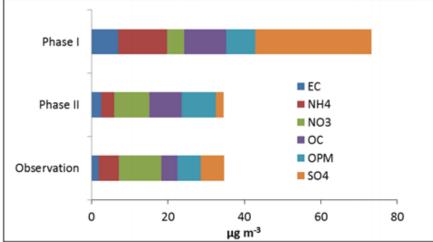
February 20, 2019

Background

Photochemical Modelling Previous Studies Current Study Overview

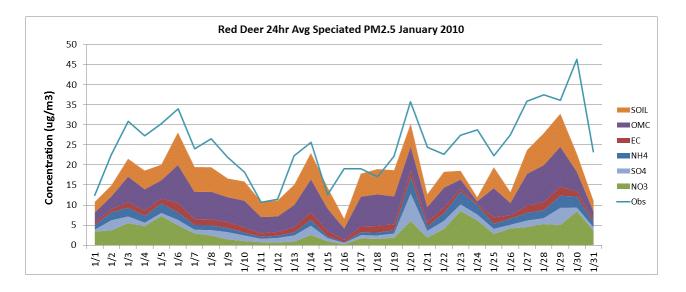

Background: Photochemical Modelling

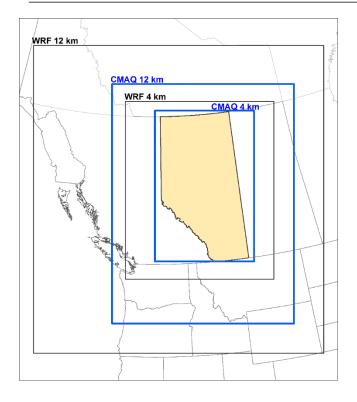
- Computed predictions of ground level air quality using:
 - Measured/estimated emissions information
 - Input meteorology
 - Measured ambient data for ground-truthing
- Uses photochemical reactions to transform
 emissions over time


Background: CMAQ

- Community Multi-scale Air Quality model
 - Eulerian model
 - Grid model: Three dimensional advection between cells of discrete size

Background: Previous Studies

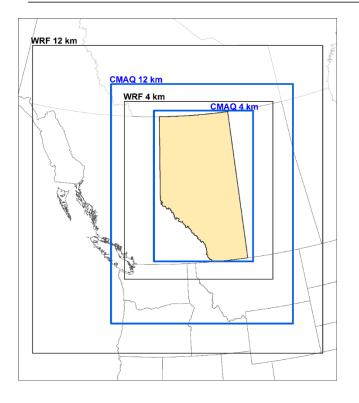

- Phase 1: Capital Region Particulate Matter Air Modelling
 Assessment
- **Phase 2:** Formation of secondary $PM_{2.5}$ in the capital region


Background: Previous Studies

• **Phase 3:** Source Apportionment of Secondary Fine Particulate Matter in Central Alberta Using CMAQ

Background: Current Study

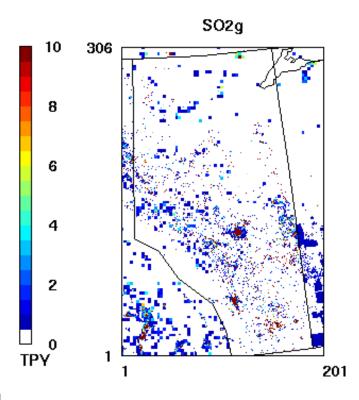
- Provincial-scale initiative of AEP
 Operations Division
 - Contracted RAMBOLL/NOVUS Environmental
 - December 2017 June 2018
- Objectives:
 - Improve emissions inventory
 - Model entire calendar year
 - "Source apportionment"



Novel Outcomes

Spatial and Temporal Domain Emissions Inventory Source Apportionment

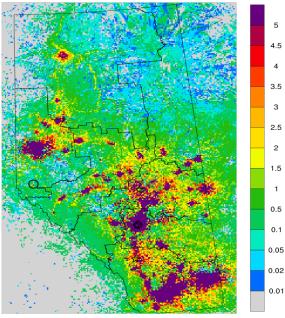
Novel Outcomes: Spatial Domain


- Considered entire province at 4km x 4km
 - Consistent provincial approach enables regional comparisons
 - Areas poorly served by monitoring modelled
 - Previous studies focused on smaller domains
 - 4km x 4km selected to balance computation time with spatial resolution

Novel Aspect: Temporal Domain

- One complete calendar year modelled
 - Enables discussion on source impact year-round; aligning with CAAQS
 - 2013 selected due to interest around 2011-2013 CAAQS
 - Additional meteorology produced for 2011 and 2012
 - Previous studies were limited to the winter months of 2010

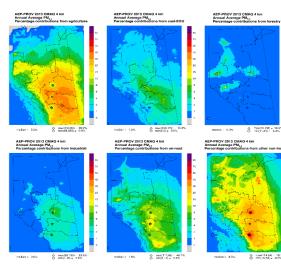
Novel Aspect: Emissions Inventory

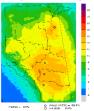


Most up-to-date modelling emissions inventory

- Enabled the most faithful source apportionment to-date
- Improvement over previous studies:
 - 2013 as base year
 - Major point sources updated
 - UOG sources consolidated
 - AB Transportation supplied data

Novel Aspect: Ambient Air Quality


AEP-PROV 2013 CMAQ 4 km Annual 98th percentile of daily maximum NO₂ Contributions from on-road

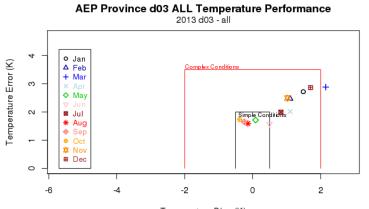

- Predictions for secondary pollutants:
 - $PM_{2.5}$ species
 - NO₃, SO₄, EC, OC, NH₄, OPM
 - O_{3}
- Predictions for primary pollutants:

 $-NO_2$, SO₂, VOCs

Novel Aspect: Source Apportionment

AEP-PROV 2013 CMAQ 4 km Annual Average PM_{6.0} Percentage contributions from upstr

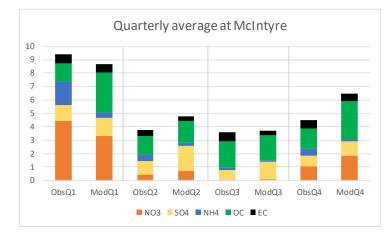
- "Source apportionment" by zero-out scenarios
- Sector-based
 - Agriculture, Coal-fired power plants, Forestry, Upstream oil and gas, Other industrial, On-road mobile, Non-industrial nonpoint sources



Discussion of Results

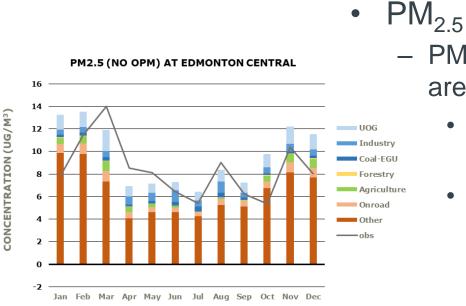
Model Performance Source Apportionment Results

Results: Model Performance

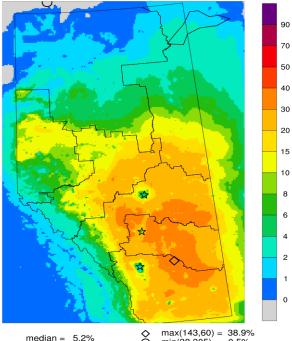


Temperature Bias (K)

- Meteorology
 - Consistent with past studies
 - "MYJ" PBL Scheme
 - "ERA" nudging
 - Meteorological parameters all have some positive bias
 - Small bias for wind speed/direction
 - Larger but acceptable bias for temperature/humidity

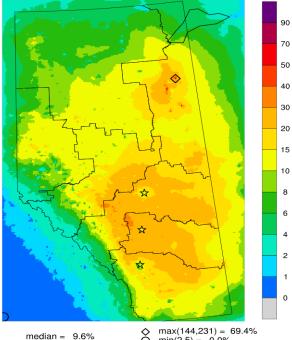

Results: Model Performance

- PM_{2.5}
 - Performance is comparable to past studies
 - Meets performance criteria for bias and error
 - Good speciation profile reproduction


Results: Model Performance

- PM_{2.5} over-predicted in urban areas
 - Result of inventory and methodology
 - By correcting affected species, PM_{2.5} predictions appear reasonable

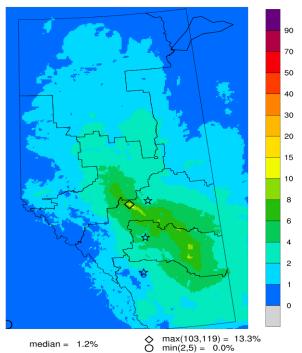
AEP-PROV 2013 CMAQ 4 km Annual Average PM_{2.5} Percentage contributions from agriculture


min(38.305) = -0.5%

• Agriculture

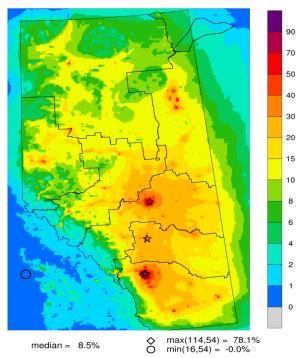
- Important PM_{2.5} contributor outside of urban areas
 - Central and Southern Alberta
- Within urban areas, contribution is offset by other sources
 - E.g. other sources of NH₃

AEP-PROV 2013 CMAQ 4 km Annual Average PM₂₅ Percentage contributions from upstream-og



Upstream oil and gas

- Large province-wide contributor to PM_{25}
 - Focussed near oil and gas activity
 - A background contributor in urban areas
- An important contributor to other pollutants: NO_2 , VOCs and O_3


AEP-PROV 2013 CMAQ 4 km Annual Average PM_{2.5} Percentage contributions from coal-EGU

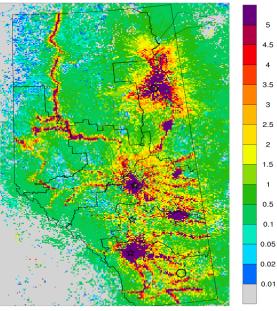
• Localized industrial sources

- Have a limited contribution to province-wide PM_{2.5}
 - Due to localized nature of the industrial activity
 - Due to favourable dispersion
- Are important contributors to local ambient air quality
 - Contributions can be the dominant source of PM_{2.5} locally

AEP-PROV 2013 CMAQ 4 km Annual Average PM_{2.5} Percentage contributions from other non-industrial

• Non-industrial non-point sources

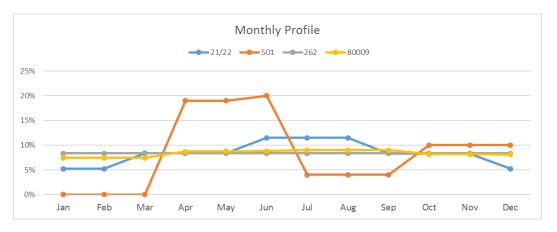
- Dominant contributors in urban areas
 - Remain important outside of cities
- Sources include:
 - Off-road mobile sources
 - Small engines
 - Railway locomotives
 - Dust (e.g. construction, un-paved roads)
 - VOCs (e.g. paints, plastics),
 - Stationary fuel combustion (e.g. heating wood combustion)



Future Considerations

Emissions Inventory

AEP-PROV 2013 CMAQ 4 km Annual 98th percentile of daily maximum NO₂ Contributions from other non-industrial



♦ max(135,220) = 43.7 ppb Ø min(159,34) = -3.0 ppb Spatial and temporal allocation

- Need refined surrogates for some sectors
 - E.g. rail, provincial highways

Emissions Inventory

- Spatial and temporal allocation
 - Accurate temporal profiles not available for some sources
 - E.g. Seasonality is not appropriate for Alberta context



PM_{2.5} Species Measurements

- As of 2018
 - PM_{2.5} Species measurements are being collected
 - Edmonton McIntyre
 - Ross Creek
 - Red Deer (Riverside, Lancaster, Horn Hill)
 - Hinton
 - Opportunity to ground-truth the model at several locations
 - Provide model predictions for a relevant present case

Published Report

- Provincial-scale modelling of PM_{2.5} and precursors with sector-based source apportionment
- Summary, Final Report and Appendix now available online
- <u>https://open.alberta.ca/publications/97</u>
 <u>81460142387</u>

Questions?

