

SOURCE CONTRIBUTION OF SECONDARY FINE PARTICULATE MATTER IN CENTRAL ALBERTA

Ou Nopmongcol, Jeremiah Johnson, Ralph Morris RAMBOLL

A&WMA CANADIAN PRAIRIE AND NORTHERN SECTION (CPANS) MAY 9, 2018

NAME CHANGE WITH EXPANDED SERVICES

- ENVIRON merged with Ramboll and name changed in 2018
- 13,000 employees in 35 countries
- Full Environmental & Health Services
- Same experts from ENVIRON/Ramboll Environ with additional global expertise

- Project Background
- Modeling Methodology
- Source Contribution Analysis
- Discussion

BACKGROUND: PARTICULATE MATTER (PM)

- Fine PM : diameter smaller than 2.5 μm ; complex mixture consisting of many different components
- Cause health, vegetation, visibility problems
- Canadian Ambient Air Quality Standards (CAAQS)

Pollutants	Old Standards	New Standards	
		2015	2020
PM _{2.5} Annual	-	10 μg/m³	8.8 μg/m³
PM _{2.5} 24-hour	30 µg/m³	28 μg/m³	27 μg/m³

- Origins
 - Primary: emitted from a source
 - Secondary: formed through chemical and physical reactions involving different precursor gases

 SO_2 , NOx, NH_3 , $VOC \rightarrow NH_4 SO_4$, $NH_4 NO_3$, OM

BACKGROUND: HIGH PM_{2.5} IN CAPITAL REGION

24-hr average > 30 μ g/m³

- 2010 : **41** exceedance days; only 4 due to fires
- Winter episodes characterized by higher than typical secondary $\rm PM_{2.5}$

Non-event : $NH_4SO_4 + NH_4NO_3 \sim 30\%$ 24-hr $PM_{2.5} < 10 \ \mu g/m^3$

5

BACKGROUND: TWO WINTER-TIME MODELLING STUDIES

Both to address winter-time $PM_{2.5}$ in the Capital Region through Photochemical Grid Model (PGM)

Why PGM?

- $\checkmark\,$ USEPA guidance (2014) requires use of photochemical models for secondary PM.
- ✓ Need to use full-chemistry models to simulate secondary PM formation as accurately as possible so using reduced-form chemistry models (e.g., CALPUFF) is not appropriate

Phase I (2014): To develop a CMAQ database that can be a reliable tool for analyzing $PM_{2.5}$ source contributions

• **CMAQ** is a regional PGM developed and maintained by the US EPA

Phase II (2015): Improve Phase I modelling database

- Updated meteorology and emissions
- Multiple sensitivity tests -> model performance improved significantly

BACKGROUND: HIGH PM_{2.5} OBSERVED IN RED DEER

Red Deer 24-hour PM_{2.5} during Jan-Feb, 2010

BACKGROUND: STUDY GOALS

- Phase III to address high winter PM
- Adopt the existing CMAQ modelling database (Phase II) for Central Alberta
 - Refinement made for Red Deer areas
 - Tool for analyzing source contributions and control strategies

MODELLING METHODOLOGY

- Update model inputs specific to the Red Deer area
 - On-road mobile emission updates
 - Reallocation of residential wood combustion
- CMAQ setup (v 5.0.2)
 - 4 km covering central Alberta
- Modelling period: Jan-Feb, 2010
- Model performance evaluation
- Zero-out Simulations

PM2.5 PERFORMANCE SUMMARY

- Average across all sites, meet FB and FE performance criteria
- Best performed sites: Edmoton McIntyre, Edmonton East, Red Deer
- Worst performed sites: Caroline and Jackson Creek (low observed PM)

RAMBOLL

SOURCE ATTRIBITION: MODELLING

- Base Case setup with zero-out emissions to examine source contribution by sector
- Central Alberta zero-out simulations:
 - 1. On-road mobile sources
 - 2. Upstream oil and gas sources
 - 3. Coal-fired electrical generating units

- 4. Other electrical generating units
- 5. Other stationary point sources
- 6. All Anthropogenic sources

• This approach can extend to quantify source contribution for each industrial source or sector (e.g., refineries, off-road mobile)

SOURCE ATTRIBUTION: EMISSIONS WITHIN MODELLING DOMAIN

Emissions attribution alone cannot tell a complete story

Other factors

- Source location
- Stack parameters
- Composition of VOC emissions
- Meteorological conditions

UOG

EGU

Other points 13

BASE CASE: JAN-FEB AVERAGE CONCENTRATIONS

Nitrate

median = $1.9 \,\mu\text{g/m}^3$

 $\begin{array}{c} \diamondsuit \\ O \\ min(33,4) = 0.1 \ \mu g/m^3 \\ \mu g/m^3 \end{array}$

Sulfate

Ammonium

Nitrate is a major constituent

median = $0.8 \,\mu \text{g/m}^3$

- 5-6 μ g/m³ in Edmonton
- 4-5 μ g/m³ in Red Deer and Calgary

 $\begin{array}{l} \diamondsuit \\ O \\ min(22,43) = \\ \end{array} \begin{array}{l} 8.3 \ \mu g/m^3 \\ min(22,43) = \\ 0.2 \ \mu g/m^3 \end{array}$

> 3 2

0.75 0.5 0.25

0.1

BASE CASE: JAN-FEB AVERAGE CONCENTRATIONS

- Commercial and residential emissions dominate PM_{2.5} in urban areas
- Hot spots outside of urban areas are associated with fires (i.e., slash burn)

(%) CONTRIBUTION TO PM_{2.5}

All anthropogenic

On-road

Coal EGUs

Other points

• Largest contributions from UOG (10-15%; and spread out)

(%) CONTRIBUTION TO NITRATE

All anthropogenic

On-road

UOG

• Similar results seen for PM_{2.5}

(%) CONTRIBUTION TO SULFATE

All anthropogenic

On-road

UOG

RAMBOLL

• UOG and coal EGUs dominate sulfate contributions

(%) CONTRIBUTION TO OC

All anthropogenic

On-road

UOG

 Urban cores influenced by Comm&Res (individual sector contributes less than 10%)

RAMBOLL

- Similar to OC results in urban cores
- Largest contributions from UOG and on-road

HIGHEST SO₂ (ABSOLUTE CONCENTRATIONS)

• Sharp gradients around large SO₂ sources: coal EGUs, UOG, other points

2-MONTH AVERAGE SO₂

• Coal EGU contributions are not as evident for the average metric

SUMMARY

- Source Contribution Analysis suggests most widespread PM_{2.5} contributions from UOG
 - UOG max contribution is 23% in PAMZ; 5-15% in most areas
 - 70-90% contributions in urban cores are from local sources
 - 1-4% contributions from EGUs in most areas
 - > 20% contributions from other point sources but they are not as widespread
- Contributions to each PM component
 - Nitrate (most dominant): widespread contributions from on-road and UOG; off-road/residential sources also contribute
 - Sulfate: coal EGUs, UOG, and other point sources make up ~100%
 - OC/EC: some fire influences otherwise commercial and residential sources dominate
- SO₂ (emitting pollutants) contributions seen close to sources

RECOMMENDATIONS

- Closer look at UOG emission inventory
 - UOG emissions are most uncertain compared to other source sectors.
 - AEP 2017 project to update small-UOG emissions
- Refinement to other emission components with focus in Red Deer and vicinity
 - Review top emitters
 - Transport modelling (e.g., MOVES) specific to Red Deer/Calgary fleets
 - Verification with spectated observations will be critical
- Additional meteorology year or longer-term simulation
- Many possibilities to examine source contributions or policy-driven changes , e.g., offroad vs residential; conversion of coal-fired power plants to gas plants
- Multiple speciated PM monitors are helpful
 - Discrepancies of Dichot, sum of speciated components, TEOM

Any questions?

This study was sponsored by Parkland Airshed Management Zone

We thank Maxwell Mazur (AEP), David Lyder (AEP), and Kevin Warren (PAMZ) for their contributions

SUMMARY

- The 2010 winter modelling performs reasonably
 - Generally good WRF meteorological performance for the PAMZ sites
 - The model could reproduce observed $PM_{2.5}$ at Red Deer well with some under estimation bias (FB=-19%; PM Bias Performance Goal used in the past $\leq \pm 30\%$).
 - Model overestimation bias in Edmonton and Calgary sites, but such bias is not systematic
 - Need PM speciation measurements in Red Deer and vicinity to further fine-tune the modeling database

(%) CONTRIBUTION TO OTHER PM

RAMBOLL

 Road (paved and unpaved) and construction dust likely dominates contributions in the urban areas

HIGHEST NO_X (ABSOLUTE CONCENTRATIONS)

- Sharp gradients around large NOx sources
- UOG in the western Alberta; On-road in urban cores; EGU in Capital Region

2-MONTH AVERAGE NO_X

• Similar to the highest NOx metric; smoother contours

