

Preventing Routine Tank Venting – A Transient Approach to the Design of Production Tank Battery Control Systems

Kenny Malmquist, SLR International Corporation
CPANS Conference, Calgary Alberta
May 9, 2018

Overview

- The Problem: Routine Venting
- Causal Analyses: Transient Model
- Solutions and Benefits
- Case Studies
- Q&A

ROUTINE VENTING FROM CONTROLLED TANK BATTERIES

Objective Hierarchy: Venting

- Eliminate "routine venting" of unburned gases
- Reduce the volume of vented gas
 - planned and unplanned nonroutine venting (e.g. maintenance and repair)
- Improve efficiency of vent systems

Alberta Energy Regulator Directive 060, 2018

What is "Routine Venting?"

- "Routine" applies to continuous or intermittent venting that occurs on a regular basis due to normal operation
- "Nonroutine" venting is intermittent and infrequent and may be planned or unplanned
- Normal operation generally means all periods of operation other than malfunction, maintenance and repair

Routine Venting During Normal Operation?

Tank systems are designed to open to atmosphere during over-pressure or vacuum conditions to protect structural integrity

Vent -To Flare -

HIGH PRESSURE

LOW PRESSURE

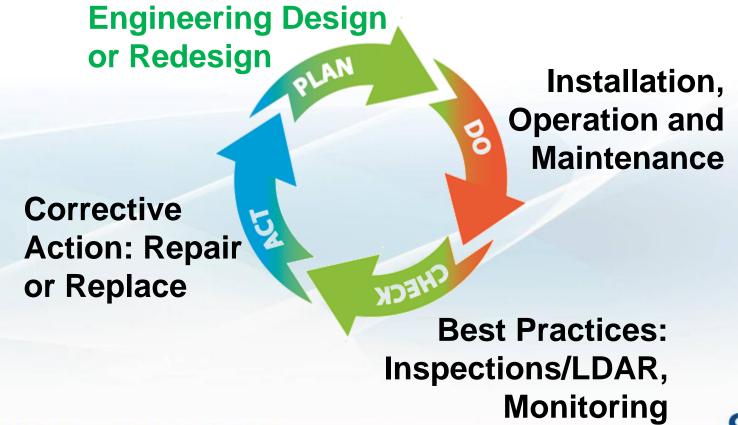
Causes of "Routine Venting"

Improper O&M

- Degraded Seals
- Stuck Dump Valve
- Carelessness
- Poor Maintenance

O&M Solution

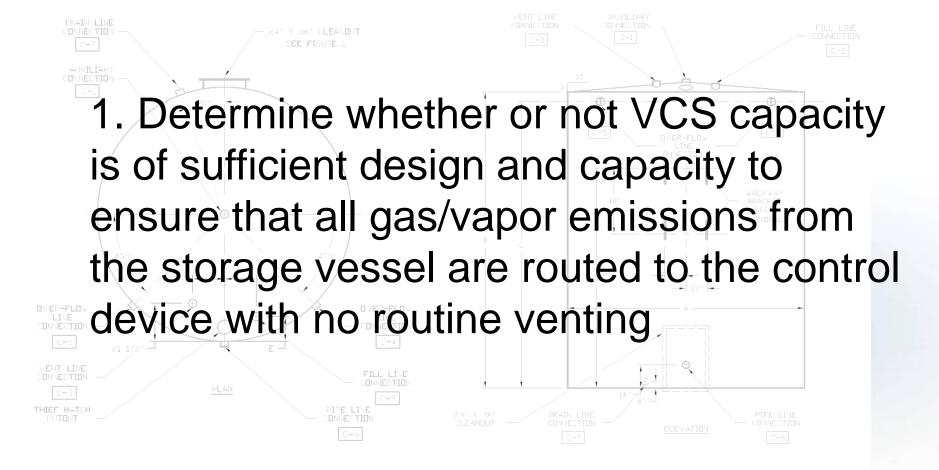
Improper Design


- Undersized unable to handle all vapors
- Oversized lowflow conditions

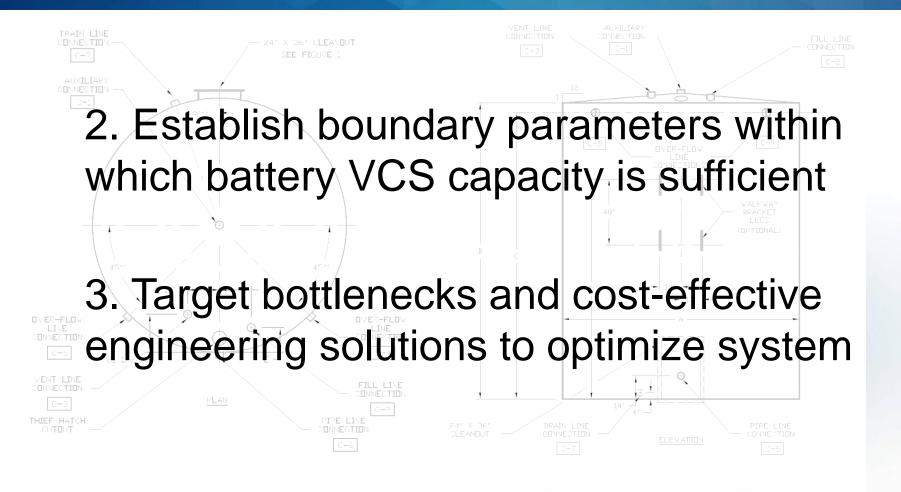
Engineering Solution

Comprehensive Solution

Continuous Improvement Process – Tank VCS Design

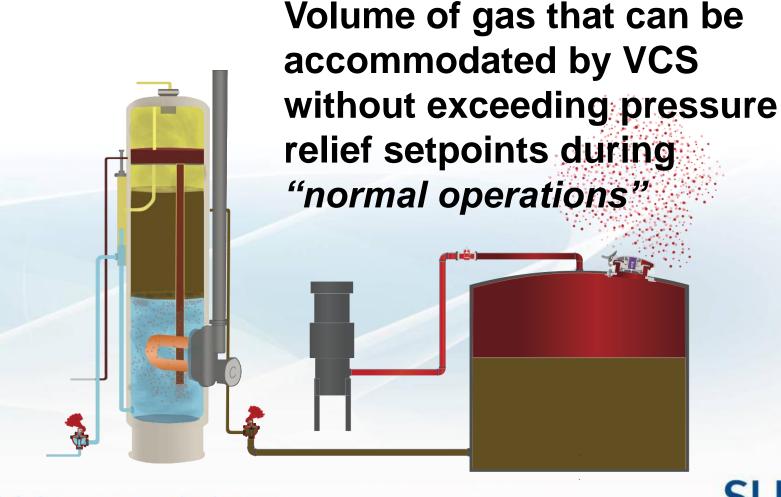


ENGINEERING DESIGN ASSESSMENT



Design Assessment Objectives

Design Assessment Objectives


Design Assessment – Steps

- 1. Quantify Vapor Into System

 Potential Peak Instantaneous Vapor Flow Rate (PPIVFR)
- 2. Determine System Capacity
 A transient approach includes accumulation in system
- 3. Compare PPIVFR and Capacity
 Can system accommodate PPIVFR with no venting?
- 4. Identify Cost-Effective Solutions
 Increase capacity and/or decrease PPIVFR

What is VCS Capacity?

Capacity Limitations

- Primary limiting factor pressure
 - Physical volume of system vapor space
 - Losses in VCS piping/fittings, flame arrestor and combustor/flare
 - Pressure relief (thief hatches, PRDs) set points

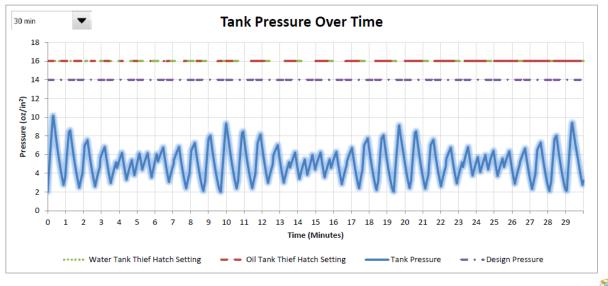
Why A Transient Model?

- Oil and gas production facilities are dynamic systems
- Can account for accumulation (surge) capacity
- Trend pressure versus time
- Create optimal design and operating parameters

STED A Transient Model for Storage Tank VCS Systems

Storage Tank Emissions Design Model Output

Site Name: Example 1
Client Name: XYZ Petroleum
Location: Weld County Colorado

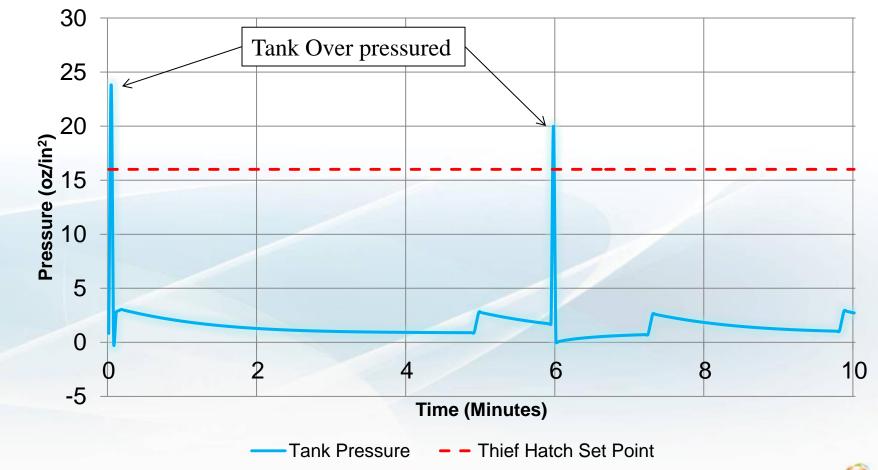

Peak Instantaneous Flow Rate		
14,143		
182		
1,245		
2		
0		
15,572		

System Capacity at Design Pressure	
Burner Capacity (scfh)	8,327
Vent Valve Capacity (scfh)	11,304
Surge Capacity (scfh)	13,166
Total (scfh)	21,494

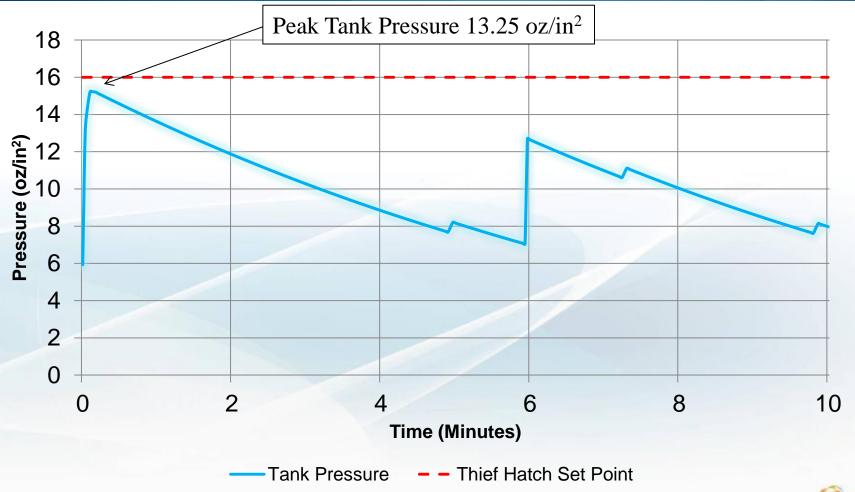
Peak Tank Pressure (oz/in²)	10.14

System Capacity at Relief Pressure	
Burner Capacity (scfh)	8,917
Vent Valve Capacity (scfh)	12,057
Surge Capacity (scfh)	15,647
Total (scfh)	24,564

Flow Out Thief Hatch (scfh) 0


CO Example Dynamic Model_v1.161004.xlsb

Output Page 4



Example 1: Inadequate Design

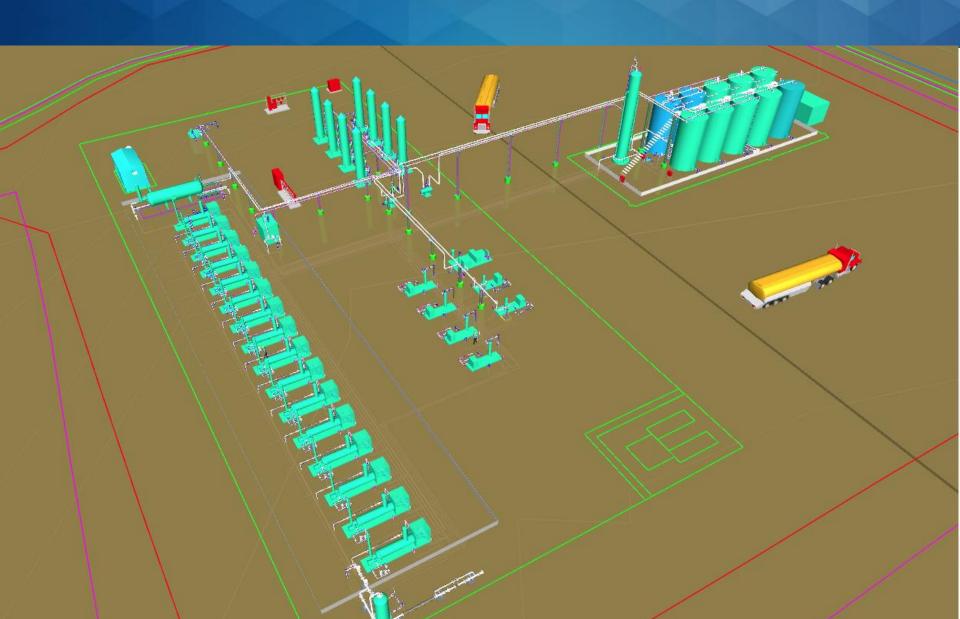
Example 2: Adequate Design

Solutions

Objective	Solution
Increase VCS Capacity	Increase vapor surge capacity (empty space) – e.g., "bottom out"
	tanks or engineered tank liquid height limits
	-Repurpose surplus tanks from over-designed systems
	Increase pressure relief device (PRD) set points
	Eliminate liquid accumulation in VCS piping
	-aboveground piping optimal
	Increase pipe/fittings diameter, remove unnecessary fittings and
	bottlenecks
	Additional or larger flares/burners, burner management systems
Decrease PPIVFR	Staged separation or VRT to reduce flash in tanks
	-Repurpose surplus vessels from over-designed systems
	Reduce dump valve body and/or valve trim size

Additional Benefits

- Eliminate routine venting, subject to proper O&M
- No production curtailment
- Little or no CAPEX(\$)
- Standardize design for future surface sites
- Optimize existing operations
- Reduce pad footprint for overdesigned systems
- Improved public relations



Transient Engineering Design Evaluation

CASE STUDIES

Case 1: Field-Wide Optimization

Case 1: Field-Wide Optimization

- 288 geographically dispersed multi-well batteries in Denver-Julesburg Basin
- Conventional and unconventional wells
- Gathered field-verified VCS parameters
- Developed model inputs and engineering boundary parameters
- Transient process modeling
- Targeted optimization measures

Case 1: Modeling

Transient Engineering Analysis to Identify Each Tank System VCS that was

- Adequately- or over-designed
 - Peak Tank Pressure < Relief/Design Pressure
- Under-designed
 - Peak Tank Pressure ≥ Relief/Design
 Pressure

Case 1: Solutions

- Increase Vapor Accumulation (Surge) Capacity
 - "Bottom Out" tank(s) (isolate from liquid service)
 - Relocate tank(s) from over-designed sites
- Decrease Vapor Flow into System
 - Relocate Vapor Recovery Tower(s) from overdesigned sites to reduce solution gas
- Increase Combustor Capacity
 - Burner management systems for low-flow
 - Relocate combustor(s) from over-designed sites

Case 1: Results

- Eliminate routine venting resulting from inadequate design
- No complete re-design, no curtailment of production
- Asset-wide cost savings >\$2M USD so far
- Reduced pad footprint for downsized sites
- Field operations awareness and engagement culture
- Regulator and public stakeholder relations

Case 2: Asset-Wide Design Analysis

Case 2: Asset-Wide Design Analysis

- U.S. EPA Settlement
- 170 oil and gas well pads in Williston Basin
- Developed Engineering Modeling Guideline
 - Determine PPIVFR
- Grouped similar Tank Systems
- Developed Engineering Design Standards for each Tank System group
 - Tank Systems meeting boundary criteria presumed to be adequately sized

Case 2: Results

EPA estimates system upgrades

"will reduce the emission of at least 11,700 tons of VOCs, 400 tons of hazardous air pollutants, primarily benzene, toluene, ethylbenzene and xylenes, and 2,600 tons of methane annually."

To Learn More

Colorado Air Pollution Control Division

Storage tank and vapor control system guidelines

https://www.colorado.gov/cdphe/air-oilandgasstoragetankguidelines

Questions?

