Light-mediated chemistry at the surface of urban road dust: implications for air quality and health

Maya Abou-Ghanem, Patrick Milner, Chelsea D. Coté, Stephanie R. Schneider, Zhihao Chen, Arthur Duarte de Marins Costa, Jeffery R Kwasny, Ming Lyu, and Sarah A. Styler CPANS Conference, Calgary, Canada

May 9th, 2018

Dust in the atmosphere: over one billion tons are emitted annually

https://gmao.gsfc.nasa.gov/research/aerosol/modeling/nr1_movie/

Dust catalyzes a wide variety of atmospheric transformations

Local dust emission

different composition ... different reactivity?

Loganathan et al., Crit. Rev. Environ. Sci. Tech. 2012; Chen et al., Chem. Rev. 2012 http://www.thedailystar.net/city/take-steps-control-dhaka-road-dust-pollution-winter-dry-season-activists-1482997

Road dust makes a significant fraction of atmospheric particulate matter (PM)

https://extranet.gov.ab.ca/env/infocentre/info/library/8862.pdf; http://www.health.utah.gov/utahair/pollutants/PM/

Road dust makes a significant fraction of atmospheric particulate matter (PM)

http://www.healthyenvironmentforkids.ca/sites/healthyenvironmentforkids.ca/files/No_Breathing_Room.pdf

Road dust photochemistry: experimental strategy

nine-compartment, temperature-controlled, stirred photochemical reactor

Dust-catalyzed singlet oxygen production

Appiani et al., Env. Sci. Process. Impact 2017; Haag et al., Chemosphere 1984

Comparative reactivity studies

Surface area-scaled $[^{I}O_{2}]_{ss}$

Road dust is more reactive than desert dust

The smallest road dust fraction is the most reactive

Organic matter contributions

Appiani et al., Env. Sci. Process. Impact 2017; Haag et al., Chemosphere 1984

Effect of season/location on road dust reactivity

1.6x10⁻¹³ 1.4 1.2 $[^{1}O_{2}]_{ss}$ / M 1.0 -0.8 0.6 0.4 0.2 0.0 Urban Fall 2016) 2017) 2017) 2017) Urban Fall 2016) Urban Fall 2016) Urban Fall 2017) Esteet Sweet Sweet Suburban Losidential Dan Barry Suburban Losidential Suburban Losidentia Suburban Losidential

[¹O₂]_{ss} relatively similar for the sample set studied

Contributions from carbon

no obvious correlations with total carbon or UV-Vis absorbance of sample extracts

Imaging and elemental analysis of road dust

Elemental composition of road dusts

	Urban (Fall 2016)	Urban (Spring 2017)	Urban (Fall 2017)	Street Sweepings	Suburban (residential)	Suburban (park)			
Na	1.63	5.57	1.95	0.94	1.11	0.9			
Mg	1.63	1.27	1.41	2.03	1.5	1.22			
Al	9.43	6.01	8.66	7.87	9.56	8.94			
Si	60.23	54.06	62.95	57.35	63.5	66.86			
к	4.02	3.26	3.84	3.39	4.86	4.42			
Ca	8.54	9.59	6.36	16.08	6.14	3.42			
Mn				0.63					
Ti	0.88				0.77	0.82			
Fe	11.07	8.74	12.58	11.03	11.27	12.93			
тс	3.93	4.27	5.36	5.66	5.57	2.80			
OC (est)		2.87	4.15	3.41	4.29	2.15			

Current work and future goals

- Redesign the reaction chamber to be more robust, and allow for increased sample throughput
- Determine surface area-scaled [¹O₂]_{ss} for the different road dust samples
- Collect and analyze more road dust samples from additional locations during different seasons

Photochemical uptake of ozone onto road dust

Does ozone react with road dust?

Does irradiation affect the reaction?

Does humidity affect the reaction?

How do we study ozone uptake onto road dust?

Coated-wall flow

Gas flow into movable injector

Schematic of coated-wall flow tube set-up

Size fractionation of dust

Preparation of coated tubes

Reaction profile of road dust and ozone

Road dust is much more reactive than desert dust!

Rate of reaction increases with mass

Enhanced reactivity at increasing relative humidity

Future outlook

What is responsible for road dust reactivity?

 Further analysis of composition and comparison of different samples Can road dust influence local air quality?

 Use calculated uptake coefficients for atmospheric modeling

With thanks to ...

Edmonton

Machine/glassblowing shop photochemical reaction chamber Department of Chemistry / Faculty of Science start-up funding

Equations

 γ_{geo} = geometric uptake coefficient k = pseudo first order rate constant r = radius of Pyrex tube c = mean molecular speed of ozone $\boldsymbol{\gamma}_{BET} = \frac{\boldsymbol{\gamma}_{geo} * S_{geo}}{m * BET}$

 γ_{BET} = BET uptake coefficient γ_{geo} = geometric uptake coefficient S_{geo} = geometric surface area m = mass of dust BET = surface area

$[O_3] = [O_3]_0 e^{-kt}$

[O₃] = concentration of ozone at time t
[O₃]₀ = concentration of ozone at time 0
k = pseudo first order rate constant
t = residence time inside tube

							1	-	4	-	4	-	-	4	-		2	2	-	2	-	2							
					1	1	1	1	1	-	1	1	-	1	2	1	2	1	2	2	2	2	2	2					
				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2				
																	Ξ.					Ξ.							
		٠		٠																									
		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
	٠	٠	٠	٠				٠			٠	٠	٠		٠	٠	٠	٠		٠		٠	٠	٠	٠	٠		٠	
1	-	2	2	1	-	1	-	2	1	-	2	2	-	2	2	2	2	2	1	2	2	2	2	2	2	2	-	1	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Ξ.	1	1	1	2	Ξ.	1	2	1	1	1	1	
																	Ξ.					Ξ.							
		1	1		1					1					1					1						1			
		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		