

trinityconsultants.com

#### Data Quality in Estimating Storage Tank Releases to Air in the Oil and Gas Sector CPANS & May 9, 2018

Harold Laurence

### Introduction

> Oil & Gas sector on the rise in Alberta

- 60% growth in investment- 2017
- 6% growth in exports 2017

Alberta Government 2017 Budget Economic Outlook

#### > NPRI regulatory driver

 Approx. half of AB sites reporting to NPRI are in the O&G sector

> U.S. EPA forthcoming revisions to AP-42?



# Agenda

- > Introduction
- > Natural Gas Production Water Flashing
- > Crude Oils Degassing
- > Crude Oils Nomograph Overestimates
- > U.S. EPA TANKS 4.0.9d and Alternatives
- > Capture Efficiency



### Natural Gas Midstream

#### > 'Production Water'

- Water that is used during production e.g. fracking
- May condense out of produced natural gas
- Contains hydrocarbon contamination but is mostly aqueous



- Scenario: Production water tank at a dry gas well
- > Onsite separator removes production water from natural gas



#### > Best Practices

- Take a pressurized sample from separator
  - Gas chromatograph data on compounds
  - Gas-oil ratio
  - Advantage: direct access by sampling the vapor products of flashing
  - Calculate working/breathing with TankESP or AP-42
- If not available:
  - Simulate flashing using thermo calculations
  - API offers software tool
  - Need a reasonable assumption re: qty VOC flashed



#### > Method A: Sampled Gas-Water Ratio





#### > Method B: Material Balance

$$Release, \frac{metric\ tons\ VOC}{yr} = \left(\frac{bbl}{yr} \times 42\frac{gal}{bbl} \times 0.003785412\ \frac{m^3}{gal} \times liquid\ wt\%\ VOC\right)(100\%\ -\%DRE)$$



| Result                      | Method A, GWR         | Method B, Mat'l Balance |
|-----------------------------|-----------------------|-------------------------|
| Throughput, m³/yr           | 20,700                | 20,700                  |
| Liquid wt%                  |                       | 1% (conservative est.)  |
| GWR, scf/bbl                | 4.01, analytical      |                         |
| Vapor Molar Mass, g/mol     | 31.02, analytical     |                         |
| Vapor wt% VOC               | 52.51 wt%, analytical |                         |
| Vapor Capture/Control       | 98%                   | 98%                     |
| VOC Release, metric tons/yr | 0.20                  | 4.14                    |
| % Difference                |                       | 2034% (!!)              |

Environment and Climate Change Canada, *Guide for Reporting to the National Pollutant Release Inventory (NPRI): 2016 and 2017,* Cat. No. : En81-1E-PDF, 2016.



- > Site-related variances in analytical results
  - Vapor wt% VOC from 1% to 50%
    - VOC release quantity proportional to vapor wt%
  - Gas-Water Ratio up to 7 bbl/scf
    - VOC release quantity proportional to GWR



#### > Scenario: Crude oil storage





#### > Best Practices

- Use ASTM D6377 to quantify TVP
  - Advantage: discovers TVP of crude without using RVP to TVP correlations that overstate TVP

#### Instructions for lab analysis:

- Measure the TVP at various temperatures
  - E.G., 5 C° increments from 5 to 40  $^\circ\text{C}$
- Use a Vapor to Liquid (V / L) ratio of 4.0
- Then, use results to regress TVP as function of temperature



- > Relationship between nomographs and degassing
  - Nomograph gives one TVP for each (RVP, T)



From U.S. EPA, AP-42 emission factor guide, section 7.1, "Organic Liquid Storage Tanks"



#### > Method A: ASTM D6377

 Analytical sampling at specified Gas-Oil Ratio (GOR) and temperature curve

#### > Method B: API 19.2 Nomographs





| Result                                             | Method A, ASTM D6377 | Method B, API 19.2 |
|----------------------------------------------------|----------------------|--------------------|
| Reid Vapor Pressure, kPa                           | 48.09                | 48.09              |
| True Vapor Pressure, kPa,<br>37.8 °C, Degassed     | 61.02                | 61.32              |
| True Vapor Pressure, kPa,<br>37.8 °C, Not Degassed | 128.1                |                    |

Crude analytical data sourced from: Hannes Pickner, "Validation of True Vapour Pressure Measurement in Crude Oil and Refined Products," *Petro Industry News Annual Buyer's Guide 2017*.





### Standing Loss (VFR)

#### > Related to several variables

$$L_{S} = 365K_{E} \left(\frac{\pi}{4}D^{2}\right) H_{VO} K_{S} W_{V}$$

(1-4)

where:

 $L_s =$  standing storage loss, lb/yr

- $K_E$  = vapor space expansion factor, dimensionless, see Equation 1-5, 1-6, or 1-7
- D = diameter, ft, see Equation 1-13 for horizontal tanks
- $H_{VO}$  = vapor space outage, ft, see Equation 1-15; use  $H_E/2$  from Equation 1-14 for horizontal tanks
- $K_s$  = vented vapor saturation factor, dimensionless, see Equation 1-20
- $W_V$  = stock vapor density, lb/ft<sup>3</sup>, see Equation 1-21
- 365 = constant, the number of daily events in a year, (year)<sup>-1</sup>

# L<sub>s</sub> varies close to directly with P<sub>vap</sub> Subject to some assumptions



# Working Loss (VFR)

> AP-42 7.1, Equation 1-35

$$L_W = N H_{LX} \left(\frac{\pi}{4}\right) D^2 K_N K_P W_V K_B$$
(1-35)

where:

 $L_W =$  working loss, lb/yr

N = number of turnovers per year, (year)<sup>-1</sup>

$$H_{LX}$$
 = maximum liquid height, ft

D = diameter, ft

 $K_N$  = working loss turnover (saturation) factor, dimensionless; see Figure 7.1-18 for turnovers > 36,  $K_N = (180 + N)/6N$ for turnovers  $\leq$  36,  $K_N = 1$ 

$$K_P$$
 = working loss product factor, dimensionless  
for crude oils  $K_p = 0.75$ 

for crude oils  $K_P = 0.75$ 

for all other organic liquids,  $K_P = 1$ 

$$W_V =$$
 vapor density, lb/ft<sup>3</sup>, see Equation 1-21

 $K_B$  = vent setting correction factor, dimensionless for open vents and for a vent setting range up to ± 0.03 psig,  $K_B$  = 1

>  $L_W$  directly proportional to Pvap ( $W_V$ )



| Release Scenarios        | Vertical Fixed-Roof Tank | Large Internal Floating<br>Roof Storage Tank                         |
|--------------------------|--------------------------|----------------------------------------------------------------------|
| Tank Diameter, m         | 3.05                     | 42.67                                                                |
| Tank Height, m           | 6.10                     | 16.57                                                                |
| Capacity, m <sup>3</sup> | 40.03                    | 23690                                                                |
| Turnovers                | 25/yr                    | 2/yr                                                                 |
| Color                    | White                    | White                                                                |
| Roof Type                | Cone, 0.0625 m/m slope   | Internal Floating,<br>Mechanical Shoe Seal<br>Shoe-Mounted Secondary |
| Location                 | Fargo, ND                | Fargo, ND                                                            |



| Result                                            | Degassed | Not Degassed              |
|---------------------------------------------------|----------|---------------------------|
| Reid Vapor Pressure, kPa                          | 48.09    | 48.09                     |
| True Vapor Pressure, kPa,<br>37.8 °C (reference)  | 61.02    | 128.1                     |
| Atmospheric Pressure, kPa                         | 98.25    | 98.25                     |
| Flashing?                                         | No       | Yes – not in TANKS 4.0.9d |
| VOC Release, Small VFR,<br>metric tons/yr working | 0.95     | 1.52                      |
| % Difference                                      | -37.7%   |                           |
| VOC Release, Large IFR,<br>metric tons/yr total   | 2.63     | 9.85                      |
| % Difference                                      | -73.3%   |                           |

Emissions calculated with U.S. EPA TANKS 4.0.9d tool; excludes flashing emissions for non-degassed crudes. Cannot calculate VFR standing losses for non-degassed crude because K<sub>E</sub> calculates incorrectly to zero.



- > Relationship between nomographs and real-world pressures
  - Nomograph is conservative overestimate





| Result                                                | Nomograph | Equation of State |
|-------------------------------------------------------|-----------|-------------------|
| VPCR, kPa                                             | 74.46     | 74.46             |
| True Vapor Pressure, kPa,<br>37.8 °C (reference)      | 103.4     | 79.29             |
| True Vapor Pressure, kPa,<br>5.8 °C (Fargo ann. avg.) | 41.93     | 33.98             |
| VOC Release, Small VFR,<br>metric tons/yr total       | 0.90      | 0.70              |
| % Difference                                          | 28.4%     |                   |
| VOC Release, Large IFR,<br>metric tons/yr total       | 1.55      | 1.19              |
| % Difference                                          | 29.7%     |                   |

Vapor pressures extrapolated at Fargo, ND temperatures based on curves provided in Cameron Konecnik, "Proposal for an Improved Method of Crude Oil Vapor Pressure Determination," CCQTA 3<sup>rd</sup> Annual LDAR-BWON-Tanks-Flares Conference, February 19, 2013, figure titled "Vapor Pressure Project Results – P1."



### U.S. EPA TANKS 4.0.9d



| S TANKS 4.0.9d                                                                                          | - • • |  |
|---------------------------------------------------------------------------------------------------------|-------|--|
| File Data Report Backup Help                                                                            |       |  |
| HFRT VFRT IFRT EFRT DEFRT Edit                                                                          |       |  |
| Ready c:\users\hlaurence\documents\technical subjects\2018-0509 ab awma presentation\refinery 2017 tanl |       |  |



# U.S. EPA TANKS 4.0.9d

> Many reasons to avoid if possible

- AP-42 revisions
- Annual vs. monthly calculations
- Working losses in VFRs inaccurate calculation method



# U.S. EPA TANKS 4.0.9d

- > Specific reasons to avoid in oil & gas sector
  - Crude oil approach may underestimate (TCEQ has disallowed TANKS since 2011)
  - No flashing emissions
  - No roof landing / tank cleaning emissions
  - Monthly variance is inaccurate, but needed for:
    - Tanks with throughput changes
    - Tanks with seasonal regulatory requirements



### **Tank Emission Calculation Tools**

> TankESP by Rob Ferry, now with Trinity

Captures flashing, roof landing, AND cleaning!

#### > Trinity Tanks Tool

- Captures roof landing and cleaning
- Spreadsheet
- High degree of customization for advanced users
- > API E&P TANK
  - Captures flashing



# **Closing Remark - Capture %**

- > 100% capture for tanks with cover and closed vent system
- > < 100% if tank is overpressurized and vapors released w/o control
- > Small changes in capture % = large changes in release quantities
  - 99% to 98% = double
  - 98% to 97% = 1.5x
  - Etc.



### Conclusions

- > Analytical data are gold standard
  - NG prod water: pressurized sample
  - Crude ASTM D6377
  - Validate assumptions behind data use
- > Calculate flashing, degassing, and nonsteady-state releases
  - Consider alternatives to TANKS 4.0.9d
- > API 19.2 nomograph may overestimate Pvap and releases



### **Questions**?

### Contact: <u>Hlaurence@trinityconsultants.com</u> (253) 867-5600 - Kent, Washington, US

