Image: Toronto Star (Jason Franson / AP)

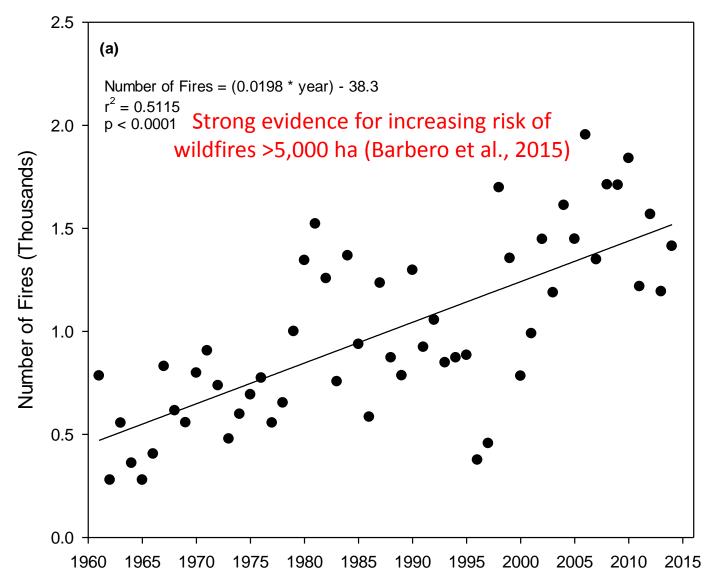
Impacts of the Fort McMurray wildfire on concentrations of PAHs, VOCs and O₃

Greg Wentworth¹, Yayne Aklilu¹, Yu-Mei Hsu², Matt Landis³ ¹Environmental Monitoring and Science Division, Alberta Environment and Parks ²Wood Buffalo Environmental Association ³National Exposure Research Laboratory, U.S. Environmental Protection Agency

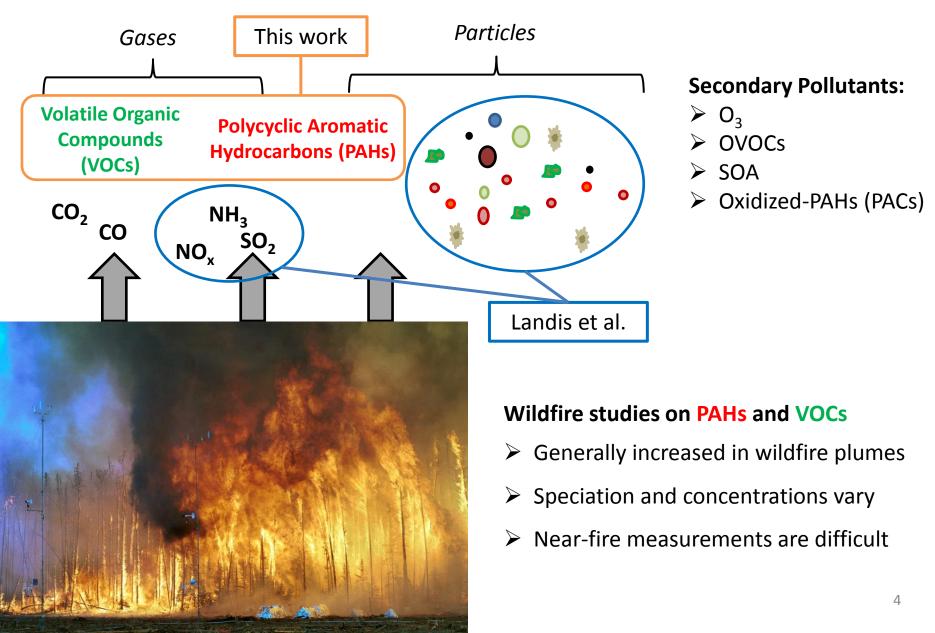
Motivation – Health Effects

Respiratory problems affect 1 in 5 firefighters after Fort McMurray wildfire

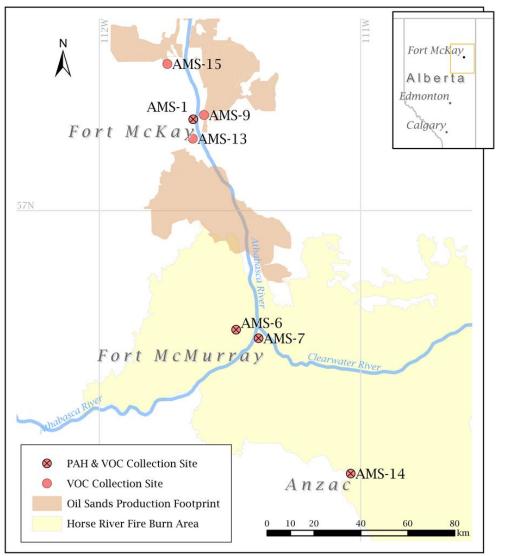
'People may develop bigger issues as time goes forward,' says epidemiologist in preliminary research


CBC News Posted: Apr 18, 2017 3:00 AM MT | Last Updated: Apr 18, 2017 9:02 AM MT

Initial findings from a University of Alberta study show how the Fort McMurray wildfire continues to affect the firefighters who fought it. (Chris Schwarz/Government of Alberta)


"...persistent respiratory issues including coughing, breathlessness, wheezing and chest tightness."

Motivation – Increasing Frequency



Alberta Agriculture and Forestry, Historical Wildfire Database (2017)

Wildfires and Air Pollutants

WBEA Air Monitoring Network

- ~20 Air Monitoring Stations (AMS)
- Hourly averages of various trace gases (NO_x, SO₂, ...) and PM_{2.5} mass
- PAHs:
 - -Daily averages, every sixth day -4 sites
 - -23 species with PUF/XAD-2/PUF
- VOCs:

-Daily averages, every sixth day

-7 sites

-65 species with evacuated canister

Service Layer Credits: T. Auch, 2014 (Production Footprint of Oil Sands Development). Wood Buffalo Environmental Association, 2017 (Horse Fire Burn Area).

Study Objectives

1) Assess PAH and VOC concentrations and composition during/after fire

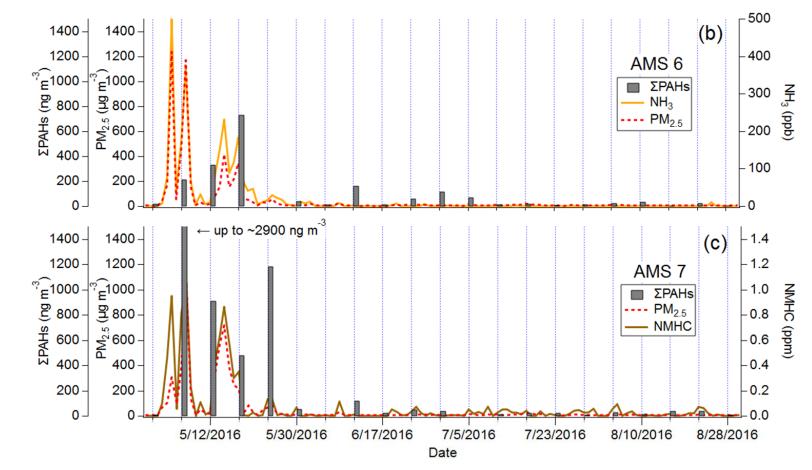
2) Compare PAHs and VOCs against AAAQOs – is there a potential to impact air quality?

3) Examine if O_3 is enhanced ~100s km downwind

Image: NASA courtesy of Jeff Schmaltz (LANCE/EOSDIS MODIS Rapid Response Team)

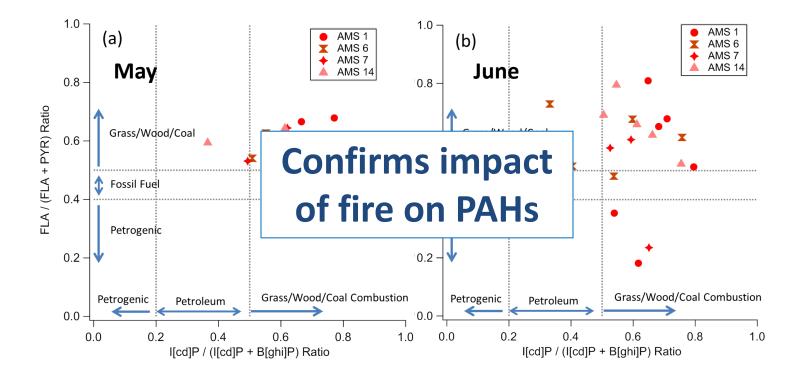
Results – "Fire Influenced" Samples

- May samples with at least 1-hr of $PM_{2.5} > 25 \ \mu g \ m^{-3}$
- Used for 2011 Richardson fire

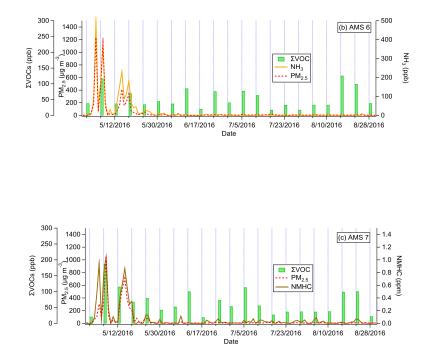

(Bytnerowicz et al., Sci Total Environ, 2016)

Date	AMS 1	AMS 6	AMS 7	AMS 14
May 6	200	M	2	N/A*
May 12	No	25	200	N/A*
May 18	No	M	2	2
May 24	200	24	200	2
May 30	No	No	No	No

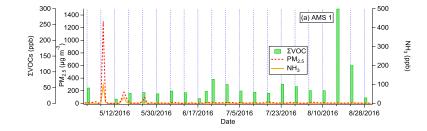
*PM_{2.5} monitor was inoperative

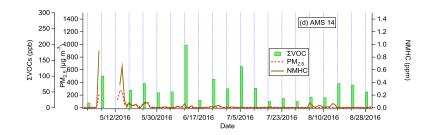

Results – PAH Concentrations

- ΣPAH enhanced by ~4-65x by fire (n = 8)
- Average: 852 ng m⁻³ (fire) vs. 50 ng m⁻³ (non-fire)
- Interquartile range: 300-980 ng m⁻³ vs. 13-54 ng m⁻³


Results – Diagnostic PAH Ratios

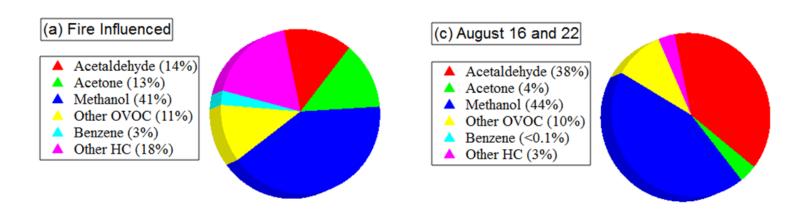
- May: dominant biomass burning (BMB) source
- June: influence from petrogenic/petroleum sources
- **Previous studies**: dominated by petrogenic/petroleum
 - Evans et al. (2016), Schuster et al. (2015), Wnorowski (2017)


Results – VOC Concentrations


- ΣVOC enhanced by ~1.5x by fire (n = 16)
- Average: 63 ppb (fire) vs. 46 ppb (non-fire)
- Interquartile range: 35-79 ppb vs. 32-53 ppb

Results – VOC Concentrations

• Aug 16/22: ΣVOC ~120 ppb



Results – VOC Composition

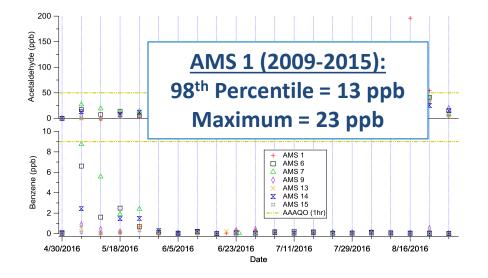
• OVOCs suggest significant atmospheric processing

- Aug 16/22: ~82% methanol and acetaldehyde
 - Acetaldehyde: oxidation of VOCs (≥C3-alkene, ≥C2alkanes, ethanol, propanal); some direct emissions
 - *Methanol*: vegetation, biomass decay, oxidation of CH₄

Acetaldehyde Sources: Luechken et al. (2012); Millet et al. (2010) Methanol Sources: Heikes et al. (2002)

Results – Impacts on Air Quality

Alberta Ambient Air Quality Objectives (AAAQOs)

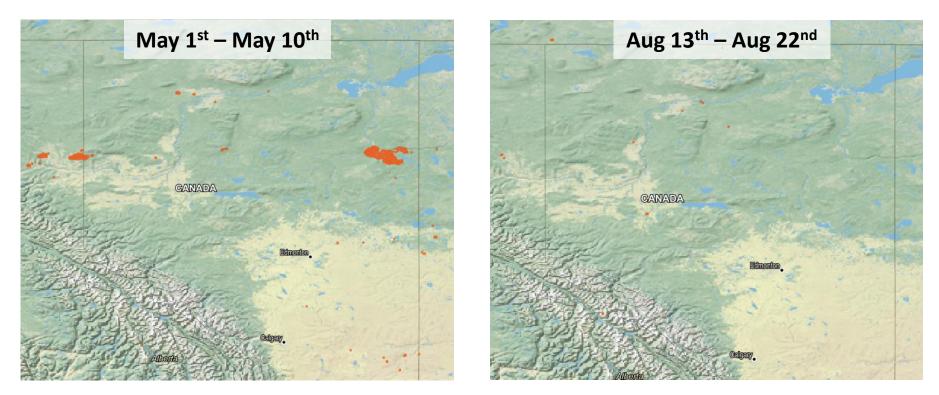

- Based on "...scientific, social, technical and economic factors"
- Exceedances <u>may</u> cause adverse health effects to sensitive persons

13

• Intended to identify situations that require further investigation

Substance	AAAQO (1-hr, ppbv)	Highest Daily Average (ppb, May-Aug 2016)	
Acetaldehyde	50	196	
Acetone	2,400	15	Caveats
Benzene	9.0	8.7	1) Acute AAAQOs only exist
Ethylbenzene	460	1.7	for 11 VOCS and 0 PAHs
Formaldehyde	40	24	2) Hourly AAAQOs and daily
Isopropylalcohol	3,190	2.2	averages
Methanol	2,000	162	3) No sites regularly monitor
n-hexane	5,960	15	speciated VOCs with 1 hour
o-xylene	530	1.5	resolution
Styrene	52	0.3	
Toluene	499	4.6	

Results – Benzene and Acetaldehyde

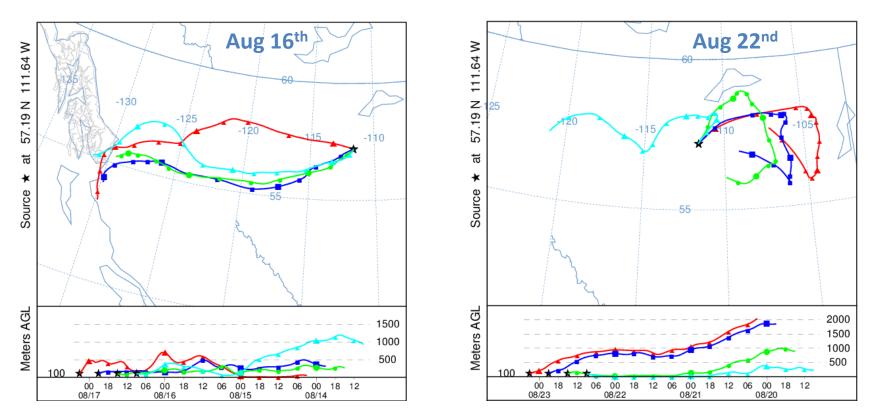

Acetaldehyde is from ???

Benzene is from wildfire

Acetaldehyde from lingering fires?

NASA's Web Fire Mapper Tool

- Near-real time and historical maps of global wildfire activity
- Satellite-based instruments (MODIS and VIIRS) at 1 km² resolution



August episodes not from wildfires!

Acetaldehyde from long range transport?

NOAA's HYSPLIT Model

- Models air parcel backtrajectories (i.e. where did the air come from?)
- Arrival times of 3:00, 9:00, 15:00, 21:00 at AMS 1

August episodes probably not from long range transport

http://ready.arl.noaa.gov/HYSPLIT.php

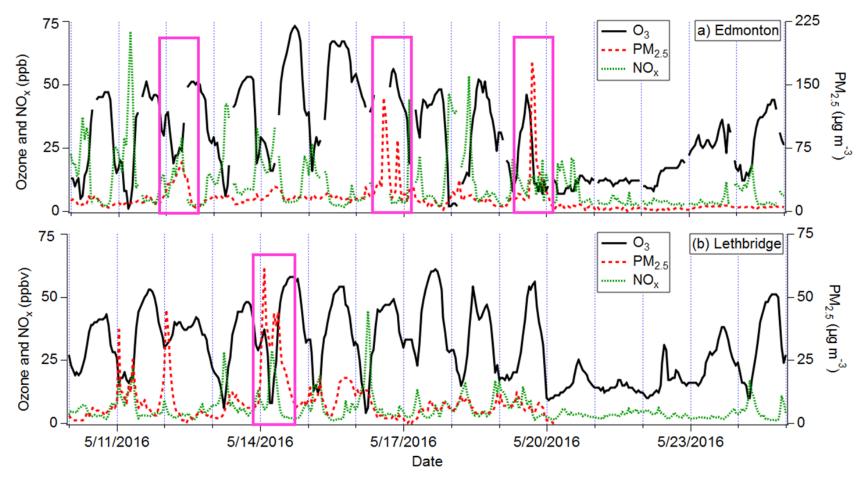
Other studies with high acetaldehyde?

1) Biogenic emissions? Unlikely to be major source

Previous studies in temperate forests (high biogenic VOCs)

Study	Location	Average (ppb)	Max (ppb)
Ramasamy et al. (2016)	Japan	3.6	10
Yu et al. (2008)	Southern China	3.3	13
Wang et al. (2005)	British Columbia	0.6	1.8
Kajos et al. (2015)	Finland	0.5	~1

2) Urban/industrial emissions? Likely a contributing factor


Previous studies in urban/industrial areas (high anthropogenic VOCs)

Study	Location	Average (ppb)	Max (ppb)
Baez et al. (2016)	Mexico City	20	99
Simpson et al. (2013)	Near Edmonton	32*	74
Seo and Baek (2011)	South Korea	4.4	77

*Only considers plume events

Results – O₃ Production Downwind

Assessed wildfire influence with PM_{2.5}, HYSPLIT and Fire Tool

No evidence for O₃ enhancement ~100s of km downwind (likely related to meteorology)

Conclusions

1) PAHs

- ΣPAHs increased by ~4-58x
- Diagnostic ratios indicative of biomass burning

2) VOCs

- ΣVOC increased by less than ~1.5x
- Aug 16th /22nd had ΣVOC larger than fire

3) Air Quality Implications

- Benzene (during fire)
- Acetaldehyde (after fire, likely anthropogenic)

4) Downwind O₃

 No evidence for O₃ enhancement in Edmonton or Lethbridge; likely related to meteorology

Questions?