Evaluation of Options for Addressing Secondary PM_{2.5} and Ozone Formation

Bruce Macdonald, PhD
Jason Reed, CCM
Overview

- Timeline and reasoning
- Regulatory drivers in the U.S.
- Emerging approaches
 - Qualitative
 - Screening
 - More advanced modeling
 - Comprehensive photochemical grid modeling with reusable modeling platforms
Regulatory Drivers

• Inert pollutants properly handled with air dispersion models
• Pollutants with in-transit chemistry more difficult:
 • Total PM$_{2.5}$ = direct PM$_{2.5}$ + secondary PM$_{2.5}$ \{particulate sulfates + particulate nitrates + ambient environment\}
 • Ozone = NOx + VOC + \{ambient environment\}
• Known health effects of PM$_{2.5}$ and ozone
 • Lowering ambient air quality standards
• Regional Haze Rule \(\rightarrow\) reach natural visibility conditions by 2064
• These overarching factors have been pushing forward the need to quantify secondary formation on a more regular basis
Where We Are Now

• In response to Sierra Club lawsuit, EPA agreed to require sources to address ‘project level’ emissions of secondary PM$_{2.5}$ and ozone in permitting efforts
 • Changes to US EPA federal modeling guidance (Guideline on Air Quality Models, Appendix W)
• Implementation Considerations:
 • Balance between simplistically conservative and science project
 • Need to build experience within the regulated community
 • Identification of reasonable modeling approaches and data needs
 • Build a “threshold” for routine approval
Known Science – PM$_{2.5}$

- Total PM$_{2.5}$ = Direct PM$_{2.5}$ + secondarily formed PM$_{2.5}$
 - Direct assumed to be inert and easy to model
 - Secondary PM$_{2.5}$ is the formation of particulate sulfate and particulate from emitted SO$_2$ and NOx into the ambient environment
 - Ambient environment function of many variables –
 - Ammonia, meteorology, competing sources
Known Science - Ozone

- Ozone is the result of photochemical reactions involving NOx and VOC emitted into the ambient environment
 - Chemistry is known to be complex and non-linear
 - Proper speciation of source VOC emissions
 - Ambient environment important
 - A lot of our understanding of ozone is based on summer, urban environments with traffic as primary drives
 - Any model needs to concurrently integrate all variables then march forward in time → difficult!
Emerging Science

• Both PM$_{2.5}$ and ozone issues have real exceptions to known science
 • Capital Region / Red Deer winter PM$_{2.5}$
 • Intermountain US West winter ozone
Approaches

- Qualitative
 - Monitoring data; emission trends; ambient environment
- Simple modeling
 - Add SO$_2$ and NOx emissions to direct PM$_{2.5}$ emissions
 - Box models or EKMA approach for ozone
- More advanced modeling
 - CALPUFF; SCICHEM
 - CALPUFF cannot model ozone
- Photochemical grid modeling
 - Leverage existing modeling platforms
 - Conduct new modeling for specific source

Our focus
Model Inter-comparisons

<table>
<thead>
<tr>
<th>Component</th>
<th>CALPUFF</th>
<th>SCICHEM</th>
<th>CAMx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Exponent</td>
<td>Electric Power Research Institute (EPRI)</td>
<td>Ramboll ENVIRON</td>
</tr>
<tr>
<td>EPA Regulatory Status</td>
<td>Proposed de-listing as EPA approved model; can be used for screening with approval</td>
<td>Not approved, but can be used with approval</td>
<td>Not approved, but can be used with approval</td>
</tr>
<tr>
<td>Peer-Review</td>
<td>Moderate</td>
<td>Limited</td>
<td>Substantial</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Updated with better particulate chemistry in version 6+; no ozone</td>
<td>CB05 and ISOROPIA</td>
<td>State of science</td>
</tr>
<tr>
<td>Analysis time</td>
<td>Days to weeks</td>
<td>Days to weeks</td>
<td>Weeks to months</td>
</tr>
<tr>
<td>User Experience</td>
<td>Extensive</td>
<td>Limited</td>
<td>Limited</td>
</tr>
</tbody>
</table>
Evaluations of SCICHEM, CALPUFF, & CAMx

From “Evaluation of Chemical Dispersion Models using Atmospheric Plume Measurements from Field Experiments” September 2012

- SCICHEM with observed meteorology
- SCICHEM with WRF/MMIF meteorology
- CAMx with MEGAN biogenic emissions
- CAMx with BEIS biogenic emissions
- CALPUFF v5.8 with CALMET meteorology
- CALPUFF v5.8 with WRF/MMIF meteorology

<table>
<thead>
<tr>
<th>Transect</th>
<th>Plume ID</th>
<th>Downwind Distance (km)</th>
<th>SCICHEM</th>
<th>CAMx</th>
<th>CALPUFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>187003</td>
<td>10.8</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>187005</td>
<td>11</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>8</td>
<td>187008</td>
<td>31.5</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>187010</td>
<td>64.9</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>187011</td>
<td>64.8</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>12</td>
<td>187012</td>
<td>89.1</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
Observed and simulated cross-wind plume concentrations of SO_2 (ppb) for Traverse 3 at 11 km downwind (taken from “Evaluation of Chemical Dispersion Models using Atmospheric Plume Measurements from Field Experiments”)

SCICHEM w WRF/MMIF

CAMx

CALPUFF
Observed and simulated cross-wind plume concentrations of NO$_2$ (ppb) for Traverse 3 at 11 km downwind (taken from “Evaluation of Chemical Dispersion Models using Atmospheric Plume Measurements from Field Experiments”)

Note that NOx is reported for CALPUFF
Observed and simulated cross-wind plume concentrations of O_3 (ppb) for Traverse 3 at 11 km downwind (taken from “Evaluation of Chemical Dispersion Models using Atmospheric Plume Measurements from Field Experiments”)

SCICHEM w WRF/MMIF

CAMx
Observed and simulated cross-wind plume concentrations of \(\text{SO}_2 \) (ppb) for Traverse 8 at 31 km downwind (taken from “Evaluation of Chemical Dispersion Models using Atmospheric Plume Measurements from Field Experiments”)
Observed and simulated cross-wind plume concentrations of NO$_2$ (ppb) for Traverse 8 at 31 km downwind (taken from “Evaluation of Chemical Dispersion Models using Atmospheric Plume Measurements from Field Experiments”)

Note that NOx is reported for CALPUFF
Observed and simulated cross-wind plume concentrations of O$_3$ (ppb) for Traverse 8 at 31 km downwind (taken from “Evaluation of Chemical Dispersion Models using Atmospheric Plume Measurements from Field Experiments”)

SCICHEM w/obs, MMIF similar

CAMx
Single Source Modeling for Ozone and PM$_{2.5}$
An Evolving Effort
Leveraging Existing Platforms

- “Projects would NOT need to generate complex model runs.
- Use a threshold approach
- Summarized in December USEPA 2016 guidance
 - “Modeled Emission Rates for Precursor Pollutants” or MERPs guidance
 - PM$_{2.5}$
 - Ozone
Source Locations Modelled by EPA
MERPs

- Modelling varied:
 - Stack heights (high and low)
 - Emission levels of precursors (one precursor modelled at a time)
 - Spatial distribution takes into account local and regional-scale influences
- Results used to:
 - Determine emission thresholds below which ozone and secondary formation is ‘insignificant’
 - Region-specific modelled response for precursor, i.e., $X \text{ tpy of precursor } \rightarrow Y \mu g/m^3$
 - Can use worst-case or “representative” results for a particular project
 - Or use modeling files (provided by EPA) to do own modeling
MERPs

• This approach is:
 • Easy
 • Efficient
 • Based on peer review
 • Use worst-case or representative results
 • Provides a reusable modeling platform

• Only available for continental U.S.
 • Could be extended to Canada?
Conclusions

- CALPUFF performance degraded with distance
- “Both CAMx and SCICHEM show skill in modeling ozone titration and formation effects within the ... plume.”
 - CAMx shows sensitivity to background VOCs
 - SCICHEM shows sensitivity to meteorological data
- MERPs as a screening tool for ozone and PM$_{2.5}$