

- **★** The climate is changing
 - Examples from the global cryosphere (snow, sea ice, permafrost, glaciers, ice sheets)
- **★** Causality: Things that push the climate around
- **▲** Should we care? What we should be debating
 - Examples of impacts: sea level rise
 - The other side of the coin:
 Can we live with it? Are CO₂ reductions even possible?

- **★** The climate is changing
 - Examples from the global cryosphere (snow, sea ice, permafrost, glaciers, ice sheets)
- Causality: Things that push the climate around
- ★ Should we care? What we should be debating
 - * Examples of impacts: sea level rise
 - The other side of the coin:
 Can we live with it? Are CO₂ reductions even possible?

Global Top 12 Warm Years	Anomaly °C
2010	0.62
2005	0.62
1998	0.60
2003	0.58
2002	0.57
2009	0.56
2006	0.56
2007	0.55
2004	0.54
2001	0.52
2008	0.48
1997	0.48

http://www.ncdc.noaa.gov/sotc/

Jan-Dec Land & Ocean Surface Mean Temp Anomalies NCDC/NESDIS/NOAA

Global Temperature Change Decade Averages

Columbia Glacier

Saskatchewan Glacier, Canadian Rockies

Photo credit: R. Sandford

The global glacier mass balance record

Changes in Greenland

Ice-Sheet and Sea-Level Changes

Richard B. Alley, 1*† Peter U. Clark, 2* Philippe Huybrechts, 3,4* Ian Joughin 5*

www.sciencemag.org SCIENCE VOL 310 21 OCTOBER 2005

- ★ The climate is changing
 - Examples from the global cryosphere (snow, sea ice, permafrost, glaciers, ice sheets)
- **▲** Causality: Things that push the climate around
- ★ Should we care? What we should be debating
 - * Examples of impacts: sea level rise
 - The other side of the coin:
 Can we live with it? Are CO₂ reductions even possible?

IPCC (2007) assessment of radiative forcing

RADIATIVE FORCING COMPONENTS

On Causality

Lots of things can push the climate around, e.g., solar variability; volcanic & industrial sulphate emissions; , land use changes; greenhouse gases other than CO₂

It is just that nothing other than CO₂ explains the warming over the last 40 years

Flipping things over: given the GHG buildup, it would be strange if the world was *not* warming

- ★ The climate is changing
 - Examples from the global cryosphere (snow, sea ice, permafrost, glaciers, ice sheets)
- Causality: Things that push the climate around
- **▲** Should we care? What we should be debating
 - Examples of impacts: sea level rise
 - The other side of the coin:
 Can we live with it? Are CO₂ reductions even possible?

Figure 11.9: Ranges of uncertainty for the average rate of sea level rise from 1910 to 1990 and the estimated contributions from different processes.

Figure 11.9: Ranges of uncertainty for the average rate of sea level rise from 1910 to 1990 and the estimated contributions from different processes.

Changing Reality: From IPCC 2001 to IPCC 2007

Contributions to global sea level rise, 1993-2003

Redrawn from IPCC (2007)

Velicogna (2009), GRL

Contributions to global sea level rise, 1993-2009

Prospects for IPCC (2013) ??

Concerns about sea level rise

A bit of a wild card: Published estimates vary from 20-160 cm of global eustatic sea level rise by 2100

Impacts: Very global, and most serious for tropical developing countries.

- * 150 of the world's 192 sovereign nations border the ocean
- * The world's 98 largest coastal cities (population > 2 million) constitute 664 million people

Potential impact of sea-level rise on Bangladesh

Modelled Ocean Warming, Zonally-Averaged

Implications for Sea Level Rise Commitment

- ★ The climate is changing
 - Examples from the global cryosphere (snow, sea ice, permafrost, glaciers, ice sheets)
- Causality: Things that push the climate around
- **▲** Should we care? What we should be debating
 - * Examples of impacts: sea level rise
 - The other side of the coin:
 Can we live with it? Are CO₂ reductions even possible?

Climate Change Policy

1997: COP 3, Kyoto

Mandatory targets on greenhouse-gas emissions for the world's leading economies.

Targets range from -8% to +10% of countries' individual 1990 emissions levels

"with a view to reducing their overall emissions of such gases by at least 5 per cent below existing 1990 levels in the commitment period 2008 to 2012"

http://unfccc.int/di/DetailedByGas.do

Potential 'tipping elements' in Earth's climate

Lenton et al., 2008

General Comments On Climate Models

Like weather forecasts,

"Too speculative to trust, but too good to ignore"

A few important points:

- Good at certain things, lousy at others
- ▲ Forecasting the mean climate state is a much simpler problem than a weather forecast
- ▲ Not about the internal redistribution of energy, but the balance:

$$\rho c \frac{\partial T}{\partial t}$$
 = Energy In – Energy Out

Climate Change: Hedging our Bets

We don't know exactly what is ahead:

- ▲ natural forcings could make it warmer or colder than the simple GHG-driven trajectory we are on
- ★ there are feedbacks that can go either way

But: What we do know about the climate system is that the basic thermodynamics make warming a good bet, and that feedbacks in the system are mostly positive.

The conservative, rational thing to do is to play the odds and minimize our risks and negative impacts.

Climate Change: Cutting through the Rhetoric

Can we reframe the question to:

"What kind of world do we want?"

Spare slides

Periodic variation in sunspot number

Duhau and Jager, 2010

See e.g. Benestad, R.E. (2002) Solar Activity and Earth's Climate, Praxis-Springer, Berlin and Heidelberg, 287 pp.

Summary, Primary Climate Forcings (W/m²)

	0-2000 AD (W/m ²)	1900-2000 (W/m²)
Volcanic	-0.21	-0.27
Aerosol	-0.03	-0.50
Solar	+0.04	+0.41
Greenhouse gases	+0.01	+1.10

Observed sea level rise

Wet base = potential speedup

Climate Change Policy

1997: COP 3, Kyoto

Required ratification from at least 55 parties to the Convention, representing at least 55% of global CO₂ emissions, to come into effect

Stalled for several years. Canada (3.3%) ratified in 2002. Russia (17.6%) ratified November, 2004.

Legally came into effect, February 16, 2005

156 of 162 countries accepted, representing 61.6% of global emissions

COP15 COPENHAGEN

UN CLIMATE CHANGE CONFERENCE 2009

